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Abstract. Assigning functional classes to unknown genes or proteins on diverse

large-scale data is a key task in biological systems, and it needs the integration of

different data sources and the analysis of functional hierarchies. In this paper we

present a method based on Hopfield neural networks which is a variant of a prece-

dent semi-supervised approach that transfers protein functions from annotated to

unannotated proteins. Unlike this approach, our method preserves the prior infor-

mation and takes into account the imbalance between positive and negative exam-

ples. To obtain more reliable inferences, we use different evidence sources, and in-

tegrate them in a Functional Linkage Network (FLN). Preliminary results show the

effectiveness of our approach.

1. Introduction

Functional linkage networks (FLNs) are well-established tools to represent the functional

relationships between proteins. A FLN is a graph where each node corresponds to a pro-

tein, and an edge connects two proteins if any experimental or computational procedure

states that these proteins might share a common biological characteristic. The main pur-

pose of these networks is to find functional classes, i.e. Gene Ontology (GO) terms [1],

for partially annotated or unannotated proteins.

A FLN can be constructed by various evidence sources, such as physical or genetic

interactions, correlated gene expression data from microarray data, or correlated phylo-

genetic profiles. The single source is able to capture only a subset of the underlying bi-

ological characteristics of proteins, and the resulting FLNs have different reliability and

coverage according to the selected source.

The connections between nodes in a single source graph often are "putative", i.e.

some experiments suggest that two nodes can be related, but we have no assurance of

this relationship. However, if a putative functional linkage between two proteins is es-

tablished by independent experiments, than the confidence of a functional relationship

between these proteins increases. As consequence, some researchers have proposed in-

tegrated FLNs, which are FLNs constructed combining several data sources, with the

objective to obtain more robust and reliable functional linkages. Different approaches
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have been proposed: Marcotte et al [2] describe a conjunctive integration, in which the

integrated graph includes the edges confirmed in each single source graph; this approach

is likely to generate a high false-negative rate. Analogously, the disjunctive integration

tends to generate a high false-positive rate. Jiang et al [3] consider only the connections

that have a "good" evidence in each single data source, and than they use a decision tree

to establish if a connection between two protein must be maintained.

The selection of the integration method is crucial for the prediction phase, and it

is dependent on the data sources and on the decision rule adopted. The decision deter-

mines the mechanism by which functional annotations are transferred to a node from its

neighborhood. Several decision rules have been proposed in literature, such as the sim-

ple guilt by association rule [4], which transfers to a node the functional annotations of

the neighbors with linkage weight greater than a fixed threshold. This rule does not con-

sider the frequencies of the annotations in the neighborhood of nodes. The neighborhood

weighting rule overtakes this limit considering either the frequencies of the annotations

or the weights of the relevant connections [5]. Other rules infer functional annotations

by extending the neighborhood of nodes at a distance greater than one edge [6].

Applying the decision rule to a node determines a functional consistency condition

in its neighborhood, but it does not guarantee the functional consistency of the whole

network. Some proposed methods attempt to achieve a global consistency by minimizing

the number of locally inconsistent assignments [7,8,9]. Karaoz et al [9] propose a global

FLN represented by an Hopfield network [10]: starting from a state (the prior knowl-

edge), an equilibrium point that maximizes the global consistency is reached, and then

the final state of the network is used to infer the functional annotations. This method

allows to obtain inferences with a good reliability and a low computational effort. The

algorithm has good performances when the "positive examples" rate for a given func-

tional property is approximately equal to that of the negatives. When negative examples

overcomes positives the prediction capabilities undergo a significant decay.

In this paper we propose two variants of Karaoz’s approach in order to improve the

performances in these cases: GAINu which "preserves" the prior information, and Cost-

Sensitive GAIN (CS-GAIN) which takes into account the imbalance between positive

and negative examples. In Sec. 2 we give some preliminary definitions necessary for the

subsequent discussion; Sec. 3.1 contains the detailed description of the Karaoz’s method,

while in Sec. 3.2 and Sec. 3.3 the two variants of this method are introduced. Finally in

Sec. 4 we present some preliminary results with the model organism S. cerevisiae.

2. Basic Definitions

The prior information about the protein network is represented by an undirected

weighted graph G(V,w), where V = {1, 2, . . . , n} is the set of nodes (proteins) and

w : V × V −→ R
+ is a function which associates to each edge {i, j} a non negative

weight wij , with wij = wji and wii = 0 for each i, j ∈ V ,where wij is the evidence

that two proteins share the same biological function. The weight is zero if there is no

evidence that the two proteins share the same function.

To define functional annotations for nodes we use the Gene Ontology (GO) func-

tional hierarchy [1]. GO covers three domains: cellular component, molecular function

and biological process. Concepts are represented by terms and each term is used to de-



scribe gene products, through the mechanism of annotations. An annotation is an associ-

ation between a term and a gene product suggested by suitable experimental or indirect

(i.e. computational) methods. The hierarchical structure of GO is described by a directed

acyclic graph, whose nodes are terms. The annotations are "preserved": if the term u is

an ancestor of v, then the set of gene products annotated with v is a subset of the set of

gene products annotated with u.

For each term c and a proteins i, we define:

annc(i) =

{
+1 if i is annotated with c
−1 if i is not annotated with c

Given the protein network G(V,w), we write V = Va ⊔ Vu, where

Va = {i | ∃c s.t. annc(i) = +1}
Vu = {i | ∀c, annc(i) = −1}

are respectively the set of annotated and unannotated proteins in V .

3. Methods

In this section we firstly recall the dynamic FLN presented by Karaoz et al [9], then we

introduce a method GAINu for preserving the prior knowledge, and a variant CS-GAINu

that takes into account the different relevance of "positive" and "negative" examples in

unbalanced GO classes.

3.1. GAIN.

The method proposed by Karaoz et al, called GAIN, consists, after the selection of a GO

term c and of the original graph G, in defining a binary classifier based on a discrete

asynchronous Hopfield network [10] depending on c and G. In this network each node

i has a discrete state, denoted by xi, which can be 1, 0 and -1. The state 0 corresponds

to an uncertain state, and the purpose of this approach is to change these states in -1 or

1 during the network evolution. A final state +1 means that the protein associated to the

node can be annotated with c. This method uses all annotated nodes as examples to train

the network and to transfer functional annotations. The nodes i for which annc(i) = 1
are the positive examples, those for which annc(i) = −1 are the negative ones. The

energy function of the network is

E(x) = −
1

2

[
xWxT − xθT

]
(1)

where W is the weight matrix, θ = (θ1, . . . , θn) ∈ R
n is the vector of the activation

thresholds, which is usually set to zero. At the beginning, the state of the network is:

xi(0) =

{
annc(i) if i ∈ Va

0 if i ∈ Vu



The network update is asynchronous, i.e. only one node at a time is updated, and sequen-

tially the update involves all network nodes.The activation rule of node i at time t+ 1 is

given by:

xi(t+ 1) = Sgn




i−1∑

j=1

wijxj(t+ 1) +

n∑

j=i+1

wijxj(t)− θi




where ’Sgn’ is the signum function, and its argument computes the weighted sum of the

states at time t of the neighbors of node i.

The main purpose is that, at the end of the execution of the algorithm, two nodes

connected by an edge with a high weight have the same state; an edge that connects

two nodes in the same state is called consistent. The goal is to maximize the weighted

sum of the consistent edges. This can be done minimizing the energy function; in fact,

as the weights wij are non negative, each consistent edge gives a positive contribution

to the absolute value of E , while an inconsistent edge gives a negative contribution.

Minimizing E maximizes the weighted sum of consistent edges, and Hopfield network

with asynchronous dynamics is a local optimizer of the energy function.

3.2. GAINu.

A first observation about GAIN is that each iteration of the algorithm also updates nodes

which are already annotated, and the network evolution can change the state of these

nodes. In order to avoid to change the prior information, we consider a model where

only unannotated nodes are updated. We called this variant GAINu, where u stands for

"unannotated". Fixed a term c, suppose that, up to a permutation, {1, 2, . . . , h} are the

unannotated nodes, {h+1, h+2, . . . , n} are those annotated, and z = {z1, z2, . . . , zh},

y = {yh+1, yh+2, . . . , yh+l}, with l = n − h, are their states respectively. Let

θz = (θ1, . . . , θh) be the initial activation thresholds for unannotated nodes. Denoting

with W the weight matrix, we have

W =

(
Wu Wua

W t
ua Wa

)

where Wu is the h x h matrix of the weights between each pair of unannotated nodes,

Wa is the l x l matrix of the weights between each pair of annotated nodes, Wua is the

h x l matrix of the weights of edges between unannotated and annotated nodes and W t
ua

its transpose. By considering y fixed in the dynamics, the energy function is:

E(z) = −
1

2

(
zWuz

T − zθ
T
)

(2)

where θ = θz − 2Wuay
T . At the beginning, the state of the network is 0; the activation

rule for node i at time t+ 1 is

zi(t+ 1) = Sgn




i−1∑

j=1

wijzj(t+ 1) +

h∑

j=i+1

wijzj(t)− θi






with θi = θi − 2
∑n

j=h+1
wijyj .

Updating at each iteration only unannotated nodes makes GAINu faster than GAIN,

and this is an important advantage when using large scale data.

In summary, both GAIN and GAINu use some positive and negative examples to

propagate their information to the whole network, but they do not take into account the

different proportions of positive and negative examples.

3.3. CS-GAINu

A common situation in the GO ontology is that positive examples are very few, some-

times with a ratio positive/negatives less than 1/10. This situation affects considerably

methods based on neural networks, because the network evolution in this case tends to

the stable point x∗ = {−1}
n

. This behavior may be more or less evident depending

on the network topology, and on the presence of different connected components in the

network. To prevent this behavior we propose a model that modifies GAINu, called CS-

GAINu, in which the influence of positive examples is increased. This approach is also

motivated by the fact that usually positive examples derive from an accurate study, while

negative examples, except for rare cases, are simply proteins not annotated for the term

under investigation. For increasing the influence of positive nodes, we propose first of

all to consider states {γ,−1}, with γ > 1. Then we return to states {1,−1} through an

affine transformation which preserves the dynamics:

zi ∈ {γ,−1} −→ vi ∈ {1,−1}, ∀i ∈ {1, 2, . . . , h}

with zi = avi + b, and a = γ+1

2
, b = γ−1

2
. The energy function of this model is

E(v) = −
1

2

[
vWuv

T − vθ̂T
]

(3)

where θ̂ = (θ̂1, . . . , θ̂h), θ̂i = 1

a

(
θi − 2∆i − (γ − 1)Di

)
, ∆i =

∑n

j=h+1
wijyj ,

Di =
∑h

j=1
wij and h is the number of unannotated nodes. The update rule for node i

at time t+ 1 is

vi(t+ 1) = Sgn




i−1∑

j=1

wijvj(t+ 1) +
h∑

j=i+1

wijvj(t)− θ̂i


 .

When γ = 1 we have θ̂i = θi, which are exactly the activation thresholds in GAINu.

∆i contains the information relative to annotated nodes in the neighborhood of node i,
and it reflects the initial imbalance between positive and negative examples. A value of γ

that reduces the absolute value of the thresholds θ̂i allows to balance the ∆i contribution.

Moreover, γ value must allow the network to avoid the trivial states {1}h and {−1}h.

Therefore, we select the value of γ which minimizes

f(γ) = ||θ̂||2 =

h∑

i=1

(
2

γ + 1

)2

(−2∆i − (γ − 1)Di)
2



where the initial thresholds are set to 0. The value of gamma which minimizes f(γ) is

γ = 1 + 2
M∆∆ −MD∆

MDD −MD∆

where M∆∆ =
∑h

i=1
∆i

2, MD∆ =
∑h

i=1
Di∆i and MDD =

∑h

i=1
Di

2. If negative

examples overwhelm those positive, MD∆ is negative and so γ is greater than 1. In

the case in which the number of positives is larger than negatives we use the precedent

approach by setting γ = 1.

4. Experimental Results

4.1. Data

The experimental context refers to a public dataset used by Chua et al in [11] and avail-

able on-line at http://srs2.bic.nus.edu.sg/∼kenny/integration. The dataset is made up by

the Saccharomyces Cerevisiae yeast proteins from SGD with at least one GO annotation.

Protein association information are obtained from six different data sources: sequence

homology (BLAST), protein-protein interactions (BIOGRID), Pfam domains (SwissP-

fam), pubmed abstract (NCBI Entrez Pubmed), Predicted interactions (STRING) and

Gene expression data (Eisen , Rosetta Compendium). Expression data weights represent

the absolute Pearson’s correlation with 0.7 threshold. As first naive approach, we have

integrated this sources in two steps:

- from the four non expression data sources, we construct an integrated graph G so

that an edge (u, v) is in G if (u, v) is at least in one of the four source graphs;

- in G we maintain edges connecting pairs of proteins having at least one of the

two expression data sources, and their weights are represented by the correlation

of the corresponding expression values.

We obtain a final graph of 1081 yeast proteins. In [11] to annotate proteins are con-

sidered only the GO informative terms, which are terms with at least 30 annotations

and with children having less than 30 annotations. As our dataset contains only 1081

yeast proteins, there are informative terms with no annotations for these proteins, and

we discarded them from our experiments. Moreover we need terms which give us the

opportunity to test our methods in different conditions of positive/negative ratio, in order

to verify the effectiveness in overcoming the initial imbalance of positive and negative

examples. Therefore we consider the GO terms in Cellular Component and Biological

Process ontologies which have at least 800 yeast annotations, excluding the root and its

children which are too generic. We obtain 11 and 13 functional terms respectively in CC

and BP ontologies, as shown in Table 1. Either CC terms or BP ones result in very close

locations in the corresponding ontology DAG, as we can see in Figure 1. In addition to

structural relationships, such terms also have also semantic relationships, in the sense

that they share part of their annotations.
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Figure 1. The two subgraphs representing (gray nodes) the selected GO Cellular Component (a) and Biologi-

cal Process (b) terms.

Table 1. Functional terms of GO Cellular Component and Biological Process ontologies used as prediction

terms.

Term Description Ontology

1) GO:0043232 intracellular non-membrane-bounded organelle CC

2) GO:0043228 non-membrane-bounded organelle CC

3) GO:0005739 mitochondrion CC

4) GO:0016020 membrane CC

5) GO:0043234 protein complex CC

6) GO:0005634 nucleus CC

7) GO:0005737 cytoplasm CC

8) GO:0043231 intracellular membrane-bounded organelle CC

9) GO:0043227 membrane-bounded organelle CC

10) GO:0043229 intracellular organelle CC

11) GO:0005622 intracellular CC

12) GO:0009059 macromolecule biosynthetic process BP

13) GO:0006810 transport BP

14) GO:0006996 organelle organization BP

15) GO:0044249 cellular biosynthetic process BP

16) GO:0009058 biosynthetic process BP

17) GO:0044267 cellular protein metabolic process BP

18) GO:0044260 cellular macromolecule metabolic process BP

19) GO:0019538 protein metabolic process BP

20) GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process BP

21) GO:0043283 macromolecule metabolic process BP

22) GO:0043170 macromolecule metabolic process BP

23) GO:0044238 primary metabolic process BP

24) GO:0044237 cellular metabolic process BP



4.2. Results

We have tested GAIN, GAINu and CS-GAINu performing 10-folds cross validation on

the 1081 yeast proteins and validating each method using the BP and CC terms previ-

ously selected. Proteins are randomly divided into 10 equal-sized subsets. Each time the

annotations for proteins in a fold are hidden (their initial state set to 0) and predicted

using as training data the annotations for proteins in the other nine folds.

As the sequence of updated nodes in the network is randomly defined, the con-

vergence trajectories of the network are not deterministic; therefore to have more re-

liable results we iterated 10-folds cross validation ten times for both GAINu and CS-

GAINu, and five times for GAIN (to reduce the major computational burden of the

Karaoz’s algorithm), averaging the results. Prediction capabilities are evaluated for all

methods by using the F-score, that is the harmonic mean of precision p and recall r,

with p = TP/(TP + FP ) and r = TP/(TP + FN). TP is the number of posi-

tive examples correctly predicted, FP is the number of negative examples wrongly pre-

dicted as positive, and FN is the number of positive examples predicted as negatives.

Table 2 summarizes the results achieved with the three methods. For terms with a great

Table 2. Performance comparison between GAIN, GAINu and CS-GAINu.

GOTerms Positives F-score

GAIN GAINu CS-GAINu

1) GO:0043232 163 0.061 0.121 0.234

2) GO:0043228 163 0.047 0.121 0.234

3) GO:0005739 202 0.073 0.148 0.245

4) GO:0016020 232 0.127 0.199 0.286

5) GO:0043234 253 0.146 0.227 0.305

6) GO:0005634 334 0.179 0.291 0.362

7) GO:0005737 636 0.671 0.587 0.587

8) GO:0043231 654 0.709 0.615 0.615

9) GO:0043227 654 0.712 0.616 0.616

10) GO:0043229 717 0.759 0.686 0.686

11) GO:0005622 884 0.884 0.848 0.848

12) GO:0009059 88 0.037 0.097 0.149

13) GO:0006810 213 0.105 0.170 0.241

14) GO:0006996 201 0.098 0.136 0.260

15) GO:0044249 176 0.049 0.179 0.251

16) GO:0009058 203 0.048 0.182 0.263

17) GO:0044267 181 0.054 0.132 0.221

18) GO:0044260 197 0.064 0.133 0.236

19) GO:0019538 208 0.073 0.157 0.245

20) GO:0006139 248 0.100 0.225 0.283

21) GO:0043283 267 0.132 0.223 0.304

22) GO:0043170 365 0.205 0.342 0.412

23) GO:0044238 533 0.563 0.522 0.559

24) GO:0044237 605 0.669 0.600 0.600

imbalance towards negatives, which represents the majority of GO terms, GAIN has aw-



ful performances, GAINu performs better than GAIN and CS-GAINu shows a better

discriminative capability than the other two approaches. Even when the initial imbalance

towards negatives is small CS-GAINu has better performances than GAINu, as for ex-

ample for GO term GO:0044238. When the number of positives is larger than negatives

(a quite rare case in the GO), GAIN obtains slightly higher F-scores due to the major

possibility for GAIN to propagate evidence across the network. Figure 2 summarizes this

results.

A further advantage of GAINu and CS-GAINu is their low computational time,

which in our experiments is ten times lower than the time spent by GAIN.
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Figure 2. Comparison between GAIN, GAINu and CS-GAINu on Cellular Component (a) and on Biological

Process (b) terms.

5. Conclusions.

In this paper we present a new method for protein function prediction based on Hop-

field neural networks, called CS-GAINu, and some preliminary results about its appli-

cation to the functional classification of proteins in the model organism S.Cerevisiae.

This method is a variant of GAIN, a semi-supervised approach able to transfer protein

functions from annotated to unannotated proteins. Unlike GAIN, CS-GAINu takes into

account the imbalance between positive and negative examples to prevent that a high

imbalance adversely affects the functional predictions.

Preliminary results provide a first confirmation of the effectiveness of this approach

to manage the unbalance between positive and negative annotations that characterize the

Gene Ontology, and encourage us to test this method with other datasets using larger sets

of functional terms.

Moreover we are experimenting a new approach based on CS-GAINu that takes into

account the existing hierarchical and semantic relationships between functional terms to

perform hierarchical multi-label predictions at genome-wide level.
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