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Abstract. The graph classification problem consists, given a weightedgraph and
a partial node labeling, in extending the labels to all nodes. In many real-world
context, such as Gene Function Prediction, the partial labeling is unbalanced:
positive labels are much less than negatives. In this paper we present a new neu-
ral algorithm for predicting labels in presence of label imbalance. This algorithm
is based on a family of Hopfield networks, described by 2 continuous parame-
ters and 1 discrete parameter, and it consists of two main steps: 1) the network
parameters are learnt through a cost-sensitive optimization procedure based on
local search; 2) a suitable Hopfield network restricted to unlabeled nodes is con-
sidered and simulated. The reached equilibrium point induces the classification
of unlabeled nodes. An experimental analysis on real-worldunbalanced data in
the context of genome-wide prediction of gene functions show the effectiveness
of the proposed approach.

Keywords: Neural Network, Hopfield Network, Gene Function Prediction.

1 Introduction

Label learning in graphs requires, given a graph with a partial classification of the nodes,
to extend the classification to all nodes. Methods for solving this problem are useful
in application domains where data are naturally represented as connected nodes, i.e.
biological networks [16], social networks [4] and World-Wide-Web [6].

Several methods have been proposed for node classification.First algorithms rely
on theguilt-by-associationprinciple, which classify unlabeled nodes according to the
majority of the labels in their direct neighborhoods [11]. Furthermore, nodes can prop-
agate labels to their neighbors with an iterative process until convergence [17]. Markov
Random Walks have been applied to tune the amount of propagation we allow in the
graph, by setting the length of the walk across the graph [13]. Other approaches are
based on graph regularization [1], on global graph consistency [9], on Markov [5] and
Gaussian Random Fields [14].

Unfortunately, these methods suffer a decay in the quality of solutions when input
data are unbalanced, that is positive examples are significantly less than those nega-
tive. This issue is particularly relevant in Gene Function Prediction (GFP), where the
imbalance in data requires to adopt cost-sensitive strategies [7].
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For their common characteristics, many of the described approaches can be cast into
a common framework where a quadratic cost objective function is minimized [2]. From
this point of view, it seems natural a neural approach based on Hopfield networks, that
are local optimizers of quadratic functions [9].

In [9] the neural algorithm GAIN is applied to GFP. Neurons represent genes, the
connection weights the “similarities” between genes, the activation values are 1, -1 and
the thresholds are 0 for each neuron. Fixed a functional class, only a subset neurons are
classified (positive or negative), while the classificationof the other is unknown. For
classifying the unlabelled neurons, an initial statex is given by setting 1 the positive
neurons,−1 the negative neurons and 0 those still unclassified. The dynamics of the
network is applied to this state until the equilibrium pointx̂ is reached; a genek is
classified as ”positive” iff ˆxk = 1.

From a biological standpoint, this approach is motivated bythe fact that minimizing
the overall energy means maximizing the weighted sum of edges connecting neurons
with the same activation value. Nevertheless, this algorithm is affected by theimbalance
problemin functional classes. Since weights are non negative and thresholds are 0, when
the positive examples are less than the negative, the network is likely to converge to a
trivial state(−1,−1, . . . ,−1). Observe that, in biological taxonomies, for most of the
functional classes only a small number of positive examplesis available.

In [3] another neural algorithm, called COSNet, has been proposed for solving the
GFP problem on unbalanced data. As in the previous approach,neurons represent genes
and connection weights represent the similarities betweengenes. However, here a class
of networks with 2 parameters is considered: each neuron hasactivation values sinα and
−cosα and thresholdγ. Firstly, the algorithm learns the optimal values of the parame-
tersα andγ, then it runs the subnetwork restricted neurons with unknown classification,
that are classified according to the reached equilibrium state.

We point out that in both previous algorithms all the neuronsof the network have
the same activation values. Since, in principle, each neuron in a Hopfield network might
have different activation values, in this work we investigate this case by partitioning the
neurons in two classes and assigning to each class differentactivation values.

Accordingly, in Sect. 3 a family of parametrized Hopfield networks is introduced,
whose parameters are the possible partitions of neurons in 2classes and the correspond-
ing activation values. In Sect. 5 it is derived an algorithm that firstly learns the optimal
values of the 2 continuous parameters (the different activation values) and the discrete
parameter (the neuron partition). Then the algorithm runs the subnetwork restricted
to neurons with unknown classification , that are classified according to the reached
equilibrium state. Finally, in Sect. 6 we describe the experimental procedure adopted
to validate the algorithm on the genome-wide prediction of gene functions in a model
organism, including around 200 functional classes of the FunCat taxonomy [12], and
using 3 different types of biomolecular data.
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2 Gene Function Prediction (GFP)

In our setting, GFP is formalized as the problem of label learning in graphs [2]. Genes
are represented by a set of nodesV = {1,2, . . . ,n} and relationships between genes are
encoded through a symmetricn×n real weight matrixW, whose elementswi j represent
similarities between genesi and j.

For a given functional classc, the nodesV are labeled with{+,−}, leading to the
subsetsP andN of positive and negative vertices for classc. For most model organisms,
usually the functional labeling is known only for a subsetS⊂V, while is unknown for
U = V \S. Let beS+ = S∩P andS− = S∩N: we can refer toS+, S− andW as the
”prior information” of the GFP problem.

TheGene Function Prediction problemconsists in finding a bipartition(U+,U−)
of genes inU on the basis of the prior information. Genes inU+ are then considered
candidates for the classP∩U . From this standpoint, GFP is set as a semi-supervised
learning problem on graphs, since gene functions can be predicted by exploiting both
labeled and unlabeled nodes/genes and the weighted connections between them.

3 Hopfield Networks for GFP

In this Section we consider a family of Hopfield networks [8] with binary neurons
partitioned in two classesG1 andG2. The activation values are{sinα1, −cosα1} for
neurons inG1 and{sinα2, −cosα2} for neurons inG2; the thresholds are set to 0.

Formally, in our setting, aHopfield network Hwith neuronsV = {1,2, . . . ,n} is a
quadrupleH = <W,b,α1,α2 >, where:

- W = (wi j ) is an×n symmetric matrix with null diagonal, whose elementswi j ∈R

represent the connection strength between neuronsi and j
- b∈ {0,1}n is a binary vector partitioning neurons in two classes:

G1 = {k|bk = 1}, G2 = {k|bk = 0}

- α1,α2 are (possibly distinct) real values denoting the neuron activation values:
{sinα1, −cosα1} (resp.{sinα2, −cosα2}) for neuronsk such thatbk = 1 (resp.
bk = 0)

The dynamics of the network is described as follows:

1. At time 0 an initial valuexi(0) is given for each neuroni
2. At time t +1 each neuron is updated asynchronously (up to a permutation) by the

following activation rule

xi(t +1) =















bi sinα1+(1−bi )sinα2 if
i−1
∑
j=1

wi j x j (t +1)+
n
∑

k=i+1
wikxk(t)> 0

−bi cosα1− (1−bi )cosα2 if
i−1
∑
j=1

wi j x j (t +1)+
n
∑

k=i+1
wikxk(t)≤ 0

(1)
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The state of the network at timet is x= (x1(t),x2(t), · · · ,xn(t)). The main feature of
a Hopfield network is that it admits a Lyapunov function of thedynamics. In particular,
consider the following quadratic state function (energy function):

E(x) =−
1
2

xTWx (2)

During the dynamics this function is not increasing; this guarantees that the dynam-
ics converges to an equilibrium state ˆx = (x̂1, x̂2, . . . , x̂n), which corresponds to a local
minimum of the energy function [8].

4 Subnetwork Property

Let be H = < W,b,α1,α2 > a Hopfield network. FixedU = {1,2, . . . ,h} and S=
{h+1,h+2, . . . ,n}, each network statex can be decomposed inx= (u,s), whereu and
s are respectively the states of neurons inU and inS. The energy function ofH can be
written by separating the contributions due tou ands:

E(u,s) = −
1
2

(

uTWuuu+ sTWsss+uTWuss+ sTWT
usu

)

= −
1
2

uTWuuu+uT(−Wuss)+C
(3)

whereW =

(

Wuu Wus

WT
us Wss

)

is the weight matrixW decomposed in its submatricesWuu

connecting nodes inU ,Wssconnecting nodes inS,Wus connecting each node inU with
each node inS, andWT

us its transpose.C=− 1
2sTWsss is a term constant w.r.t.u.

Suppose now that a state ˜sof neurons inSis given. We are interested in the dynamics
obtained by allowing the update just of neurons inU , without updating neurons inS.
We denote withHU|s̃ the Hopfield network with neuronsU which realizes this dynamics
andE|s̃ the corresponding energy; from equation (3) it holds:

Theorem 1. HU|s̃ = < Wuu,bu
,α1,α2 >, with thresholds−Wuss̃ and where bu is the

subvector of b restricted to neurons in U.

Given a state ˜s of neurons inS, we say that ˜s is part of global minimum of the energy
E of H if there is a stateu of neurons inU s.t. (u, s̃) is a global minimum ofE. The
introduction of the networkHU|s̃, is motivated by the following property:

Theorem 2. (Subnetwork property)If s̃ is part of a energy global minimum of H, and
ũ is a global minimum of the energy E|s̃(u), then(ũ, s̃) is a energy global minimum of
H.

In our setting, we associate the given bipartition(S+,S−) of S with the state ˜s=
x(S+,S−):

xi(S
+
,S−) =

{

bi sinα1+(1−bi)sinα2 if i ∈ S+

−bi cosα1− (1−bi)cosα2 if i ∈ S−

for eachi ∈ S. Suppose, for suitableb,α1,α2, thatx(S+,S−) is part of a energy global
minimum of H =< W,b,α1,α2 >; then, by the subnetwork property, we can predict
the hidden part relative to neuronsU by minimizing the energy ofHU|x(S+,S−).
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5 Algorithm for GFP

In this Section we exhibit a procedure based on Hopfield networks for dealing with the
GFPproblem.

For a given similarity matrixW, we consider the class of networksH =<W,b,α1,α2 >

on neuronsV = {1,2, . . . ,n}, whereα1, α2 are real parameters andb∈ {0,1}n is a dis-
crete parameter.

Fixed a functional class, an instance of GFP problem is givenby the matrixW and
the setsS+ andS− of positive and negative examples. We hypothesize that there exist a
triple (b̂, α̂1, α̂2) such that:

1. The solution of the problem corresponds to an energy global minimum of H =<

W, b̂, α̂1, α̂2 >

2. x(S+,S−) is part of an energy global minimum ofH

Then, by Theorem 2, we can discover the hidden part ˆu of the global minimum by min-
imizing the energy of the networkHU|x(S+,S−). Accordingly, the procedure for solving
the GFP problem can be factorized into two main steps:

Step 1. Determine the parameters (b̂, α̂1, α̂2) such that the statex(S+,S−) is approx-
imately part of a global minimum by finding the parameters (b,α1,α2) for which
x(S+,S−) is ”as close as possible” to a part of an equilibrium state ofH.

Step 2. Minimize the energy function of the networkHU|x(S+,S−) with the estimated

parameters (̂b, α̂1, α̂2) by reaching an equilibrium state ˆu in a dynamics generated
by a suitable initial state.

Finally, the solution(U+,U−) of GFP is:

U+ = {i ∈U | ûi > 0}
U− = {i ∈U | ûi ≤ 0}.

In the following we discuss in more details Step 1 (Section 5.1) and Step 2 (Section 5.2)
of the algorithm.

5.1 Finding the Optimal Parameters

The main goal of this step is to find the values of the parametersb, α1 andα2 such that
the statex(S+,S−) is ”as close as possible” to an equilibrium state.

To this end, we consider the parametrized subnetwork restricted to neurons in S, i.e.
HS=<Wss,b

s
,α1,α2 >, wherebs, α1 , α2 are the parameter to be learned.

In the following we describe the objective function adoptedfor learning the network
parameters and the relative optimization procedure.

Objective function. First of all, we fix bs, α1 , α2. Every neuroni has an “internal
energy”Ai , where:

Ai = sinα1 ∑
k∈S

wikPkb
s
k+ sinα2 ∑

k∈S

wikPk(1−bs
k)

− cosα1 ∑
k∈S

wik(1−Pk)b
s
k− cosα2 ∑

k∈S

wik(1−Pk)(1−bs
k)

(4)
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whereP is the characteristic vector ofS+ (i.e.Pk = 1 iff k∈S+). By means ofAi , we are
able in computing the number oftrue positiveTP, false negativeFN andfalse positive
FP:

- TP(bs, α1 , α2) = ∑i∈SPi HS(Ai), i.e. the number of positive examples with posi-
tive internal energy (true positive)
- FN(bs, α1 , α2) = ∑i∈SPi(1−HS(Ai)), i.e. the number of positive examples with
negative internal energy (positive misclassification)
- FP(bs, α1 , α2) = ∑i∈S(1−Pi)HS(Ai), i.e. is the number of negative examples
with positive internal energy (negative misclassification)

Here HS denotes the Heaviside function (HS(x) = 1 if x≥ 0, 0 otherwise).
The function we want to maximize is the so calledFscore :

Fscore(b
s
,α1,α2) =

2TP
2TP+FP+FN

By observing that 0≤ Fscore≤ 1, this criterion is justified by the following:

Theorem 3. Fscore(b
s
,α1,α2)= 1 iff x(S+,S−) is an equilibrium state of the sub-network

HS.

Optimization procedure. The values of parameters that maximize theFscore criterion
are:

(b̂
s
, α̂1, α̂2) = argmax

bs∈{0,1}|S|,α1,α2

Fscore(b
s
,α1,α2). (5)

For everybs∈ {0,1}|S|, we defineF(bs) = max
α1,α2

Fscore(b
s
,α1,α2). Givenbs, an approx-

imation of F(bs) can be found by applying a standard continuous optimization proce-
dure.

In order to maximize F(bs), we adopt a simple local search on hypercube{0,1}|S|,
where the neighborhood ofbs is {b

s
|dH(b

s
,b

s
) = 1}, anddH is the Hamming distance.

Once obtained the local optimum̂b
s
, we determine the optimal values forα1 andα2 as

(α̂1, α̂2) = argmax
α1,α2

Fscore(b̂
s
,α1,α2).

Having the optimal values(b̂
s
, α̂1, α̂2), we want to extend the vectorb̂

s
to b̂ =

(b̂
u
, b̂

s
), where the indices of̂b

u
are the elements ofU .

With regard to this, compute for allk:

∆+
k = ∑

i∈S+
wki ; ∆−

k = ∑
i∈S−

wki

In this way, we associate with each neuronk a pointPk = (∆+
k ,∆−

k ) in the plane.
Consider now the subsets of pointsC1 andC2, where:

C1 = {Pk : b̂
s
k = 1} ; C2 = {Pk : b̂

s
k = 0}

By usingC1,C2 we learn two bivariate normal distributionsN2(µ1,Σ1),N2(µ2,Σ2)
where, forj = 1,2 , µ j andΣ j are respectively the sample mean and the sample covari-
ance ofCj .



A neural procedure for Gene Function Prediction 7

Finally, if k ∈ U , we setb̂
u
k = 1 if and only if the probability ofPk, according to

N2(µ1,Σ1), is greater than the probability ofPk, according toN2(µ2,Σ2).

5.2 Finding the unknown labels by Network Dynamics

After the computation of the optimal parameters(b̂, α̂1, α̂2), we consider the sub-network
HU|x(S+,S−):

HU|x(S+,S−) = <Wuu, b̂
u
, α̂1, α̂2 > (6)

with thresholds−WT
sux(S

+,S−).
Fixed an initial stateui = 0 for eachi ∈ {1,2, . . . ,h}, we run the sub-network

HU|x(S+,S−) to learn the unknown labels of neuronsU .
If û is the stable state reached by this dynamics, we obtain the final solution (U+,U−)

by setting:
U+ = {k|ûk > 0} , U− = {k|ûk ≤ 0}

6 Algorithm validation

In this Section we describe the procedure for experimentally evaluate our algorithm
and we discuss the results of the comparison of the algorithmwith other state-of-the-art
methods.

6.1 Experimental setting

We performed predictions of gene functions at genome-wide level in theS.cerevisiae
organism (yeast), using the whole FunCat ontology [12]1. We predicted functions of
genes belonging to three different biomolecular data sets previously adopted in[3]:

- Pfamis an enriched representation of Pfam domains by replacing the binary scor-
ing with log E-values obtained with the HMMER software toolkit. This dataset
contains 3528 genes and 5724 features.
- Expr data contains 250 gene expression measures of 4523 genes
- SP-simis a data set containing pairwise similarities between 3527yeast genes rep-
resented by Smith and Waterman log-E values between all pairs of yeast sequences

As validation procedure we adopt the 10-folds cross validation: genes are randomly
divided into 10 equal-sized subsets, and each time the labels for genes in a fold are
hidden and predicted using as training data the other nine folds.

1We used the funcat-2.1 scheme with the annotation data funcat-2.1 data20070316, available
from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1data20070316.
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6.2 Results

First of all, we compared our method with semi-supervised and supervised machine
learning methods proposed in the literature for the Gene Function Prediction problem.
We consider: 1) theGAIN algorithm [9]; 2)Zhu-LP, a popular semi-supervised label
propagation learning algorithm based on Gaussian random fields and its class mass
normalized versionZhu-LP-CMN[17]; 3) Support Vector Machines with linear (SVM-
l) and Gaussian (SVM-g) kernels [10].

In order to take into account the imbalance in positive and negative labels character-
izing the GFP context, we adopt theF-scoreperformance measure (Sect. 5.1). Figure 1
shows for each dataset and for all the considered methods, the average F-score across
all the functional classes.

Pfam Expr Sp−sim

Data sets

F
sc

or
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GAIN Zhu−LP Zhu−LP−CMN SVM−l SVM−g Our proposal

Fig. 1. F-score comparison in terms of averagedFscore.

Our algorithm highly outperforms in terms of average F-score all the other com-
pared methods, and the difference is always significant at 10−6 significance level, ac-
cording to the Wilcoxon signed-ranks test [15]. We think this results are due to the
inherent cost-sensitive nature of the algorithm, which is able in automatically finding
the parameters that better “re-equilibrate” the imbalancein labels.

Moreover, in order to better analyze the performance of our algorithm, we evaluate
also the precision of the algorithm,precision= TP

TP+FP, which informally is the prob-
ability that a positive prediction corresponds to a true positive. We point out that in
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Table 1. Precision and F-score of COSNet and of our algorithm averaged across the Funcat
functional classes.

Pfam
Method Precision F
COSNet 0.445 0.375

Our proposal 0.509 0.370
Expr

Method Precision F
COSNet 0.057 0.085

Our proposal 0.147 0.105
SP-sim

Method Precision F
COSNet 0.445 0.376

Our proposal 0.489 0.368

GFP context the automatic positive predictions of unknown genes need to be confirmed
by expensive experimental laboratory procedures; accordingly, achieving a high preci-
sion in predicting functions of unknown genes is central, and provides reliable clues to
experimentally check the membership of a gene to a functional class.

In Table 1 we show the averagedprecisionandFscoreof our algorithm and of another
cost-sensitive algorithm, COSNet, proposed in [3]. We can observe that the two algo-
rithms achieve close values ofFscore; on the other hand, the present algorithm obtains
a significant improvement in precision atα = 5∗ 10−10 significance level (Wilcoxon
signed-ranks test).

Conclusions

In this paper we propose a new algorithm for predicting node labels in graph in pres-
ence of label imbalance. The algorithm is based on a family ofHopfield networks with
2 real parameters and 1 discrete parameter. The parameters are learned by means of a
cost-sensitive procedure, which allows to manage the imbalance in data. Then the sub-
network of unlabeled nodes is simulated and the reached equilibrium state provides the
classification of unlabeled nodes.

The algorithm has been experimentally validated on the problem of predicting the
functions of genes in a model organism; the results, compared with those of the state-
of-the-art methods, show the effectiveness of this approach.

In this paper, neurons are bi-partitioned, but in principlewe could consider k-
partitions, increasing the number of parameters. It shouldbe interesting to evaluate the
impact that the number of parameters has on the predicting capabilities of the algorithm,
and to define the optimal number of parameters (which ensuresto avoid overfitting)
through model selection techniques.
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