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Abstract. The graph classification problem consists, given a weighteph and
a partial node labeling, in extending the labels to all notlesnany real-world
context, such as Gene Function Prediction, the partiallifedés unbalanced:
positive labels are much less than negatives. In this paperesent a new neu-
ral algorithm for predicting labels in presence of label al@mce. This algorithm
is based on a family of Hopfield networks, described by 2 comtis parame-
ters and 1 discrete parameter, and it consists of two maps:sig the network
parameters are learnt through a cost-sensitive optimizatiocedure based on
local search; 2) a suitable Hopfield network restricted tabeled nodes is con-
sidered and simulated. The reached equilibrium point ieduithe classification
of unlabeled nodes. An experimental analysis on real-wanldalanced data in
the context of genome-wide prediction of gene functionsistie effectiveness
of the proposed approach.
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1 Introduction

Label learning in graphs requires, given a graph with a glartassification of the nodes,
to extend the classification to all nodes. Methods for sgj\tis problem are useful
in application domains where data are naturally represeaseconnected nodes, i.e.
biological networks [16], social networks [4] and World-tf-Web [6].

Several methods have been proposed for node classific&iish algorithms rely
on theguilt-by-associatiorprinciple, which classify unlabeled nodes according to the
majority of the labels in their direct neighborhoods [11jrfhermore, nodes can prop-
agate labels to their neighbors with an iterative procesiseonvergence [17]. Markov
Random Walks have been applied to tune the amount of prapagaé allow in the
graph, by setting the length of the walk across the graph. [@8jer approaches are
based on graph regularization [1], on global graph consist§9], on Markov [5] and
Gaussian Random Fields [14].

Unfortunately, these methods suffer a decay in the quafigotutions when input
data are unbalanced, that is positive examples are sigmificiess than those nega-
tive. This issue is particularly relevant in Gene Functioadiction (GFP), where the
imbalance in data requires to adopt cost-sensitive sieé¢g).
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For their common characteristics, many of the describedogmhes can be cast into
a common framework where a quadratic cost objective funétioninimized [2]. From
this point of view, it seems natural a neural approach bagsedaopfield networks, that
are local optimizers of quadratic functions [9].

In [9] the neural algorithm GAIN is applied to GFP. Neuronpresent genes, the
connection weights the “similarities” between genes, tt&vation values are 1, -1 and
the thresholds are 0 for each neuron. Fixed a functionas ctady a subset neurons are
classified (positive or negative), while the classificatadrthe other is unknown. For
classifying the unlabelled neurons, an initial statis given by setting 1 the positive
neurons,—1 the negative neurons and 0 those still unclassified. Thardigs of the
network is applied to this state until the equilibrium points reached; a genk is
classified as "positive” iff, = 1.

From a biological standpoint, this approach is motivatethigyfact that minimizing
the overall energy means maximizing the weighted sum of £dganecting neurons
with the same activation value. Nevertheless, this alfgoris affected by thembalance
problemin functional classes. Since weights are non negative ardltblds are 0, when
the positive examples are less than the negative, the netatikely to converge to a
trivial state(—1,—1,...,—1). Observe that, in biological taxonomies, for most of the
functional classes only a small number of positive examiglasailable.

In [3] another neural algorithm, called COSNet, has beepgsed for solving the
GFP problem on unbalanced data. As in the previous approaahons represent genes
and connection weights represent the similarities betweees. However, here a class
of networks with 2 parameters is considered: each neuroadiaation values siao and
—cosa and threshold. Firstly, the algorithm learns the optimal values of thegpae-
tersa andy, then it runs the subnetwork restricted neurons with unknchassification,
that are classified according to the reached equilibriute sta

We point out that in both previous algorithms all the neurofithe network have
the same activation values. Since, in principle, each meinra Hopfield network might
have different activation values, in this work we invest&this case by partitioning the
neurons in two classes and assigning to each class diffecéwation values.

Accordingly, in Sect. 3 a family of parametrized Hopfieldwetks is introduced,
whose parameters are the possible partitions of neurond@sges and the correspond-
ing activation values. In Sect. 5 it is derived an algorittattfirstly learns the optimal
values of the 2 continuous parameters (the different aativaralues) and the discrete
parameter (the neuron partition). Then the algorithm rinesdubnetwork restricted
to neurons with unknown classification , that are classifiectbeding to the reached
equilibrium state. Finally, in Sect. 6 we describe the ekpental procedure adopted
to validate the algorithm on the genome-wide predictionarigyfunctions in a model
organism, including around 200 functional classes of the(ai taxonomy [12], and
using 3 different types of biomolecular data.
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2 Gene Function Prediction (GFP)

In our setting, GFP is formalized as the problem of labeld@ay in graphs [2]. Genes
are represented by a set of nodfes: {1,2,...,n} and relationships between genes are
encoded through a symmetricc nreal weight matriyV, whose elements;; represent
similarities between genésindj.

For a given functional class the node¥d are labeled wit +,—}, leading to the
subset® andN of positive and negative vertices for clas$or most model organisms,
usually the functional labeling is known only for a subSet V, while is unknown for
U=V\S Let beS" =SnP andS™ = SNN: we can refer t&8", S~ andW as the
"prior information” of the GFP problem.

The Gene Function Prediction problegonsists in finding a bipartitioflJ *,U ™)
of genes inJ on the basis of the prior information. Genedun are then considered
candidates for the clagdnU. From this standpoint, GFP is set as a semi-supervised
learning problem on graphs, since gene functions can beagieedoy exploiting both
labeled and unlabeled nodes/genes and the weighted camsslgeétween them.

3 Hopfield Networks for GFP

In this Section we consider a family of Hopfield networks [8}twbinary neurons
partitioned in two classe&; andG,. The activation values argsina;, — cosa; } for
neurons inG; and{sinay, — cosa,} for neurons inGy; the thresholds are set to 0.

Formally, in our setting, &lopfield network Hwith neurons/ = {1,2,... ,n} is a
quadrupleH = <W.,b, a1, a, >, where:

- W = (wjj) is an x n symmetric matrix with null diagonal, whose elemewis€ R
represent the connection strength between neurand
- be {0,1}"is a binary vector partitioning neurons in two classes:

G1 = {Kjb = 1}, G, = {klby = 0}

- 01,0, are (possibly distinct) real values denoting the neuroivaibn values:
{sinai, —cosa1} (resp.{sinaz, —cosaz}) for neuronsk such thato, = 1 (resp.
by =0)

The dynamics of the network is described as follows:

1. Attime O an initial valuex;(0) is given for each neurori
2. Attimet+ 1 each neuron is updated asynchronously (up to a permutayahe
following activation rule

i—1
bisinag + (1—by)sinay if Iz wijXj(t+1) + § Wik Xy (t) >0
X(t+1) = o A 1)

n
—bicosa; — (1—bj)cosap if Y wijxj(t+1)+ T wix(t) <0
=1 k=T+1
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The state of the network at tiniés x = (X (t),X2(t), - - - , Xa(t)). The main feature of
a Hopfield network is that it admits a Lyapunov function of thy@amics. In particular,
consider the following quadratic state functi@mérgy functioh

E(X) = —% W x (2)

During the dynamics this function is not increasing; thisugntees that the dynam-
ics converges to an equilibrium state="(X1,%», ..., %), which corresponds to a local
minimum of the energy function [8].

4 Subnetwork Property

Let beH = < W,b,a1,a, > a Hopfield network. Fixedd = {1,2,...,h} andS=

{h+1,h+2,...,n}, each network statecan be decomposedi= (u,s), whereu and
sare respectively the states of neuronslimand inS. The energy function dfi can be
written by separating the contributions dueitands:

1
E(us) = — > (UTWyut + ST Wess+ uTWyss+ sTW )
3)
1
= éuTWuuu +u" (~Wyes) +C

WULI WUS
whereW = (WES Wee
connecting nodes id , Wss connecting nodes i, Ws connecting each node bh with
each node ir5, andW/ its transposeC = — 3sTWsssis a term constant w.r.t.

Suppose now that a stagef neurons irSis given. We are interested in the dynamics
obtained by allowing the update just of neurondJinwithout updating neurons if.
We denote wittHy s the Hopfield network with neuror$ which realizes this dynamics
andE the corresponding energy; from equation (3) it holds:

) is the weight matrixV decomposed in its submatricég,,

Theorem 1. Hys = < Wyy,b", a1, a2 >, with thresholds-W,s§ and where bis the
subvector of b restricted to neurons in U.

Given a states ©f neurons inS, we say thas’s part of global minimum of the energy
E of H if there is a statel of neurons inJ s.t. (u,3) is a global minimum oE. The
introduction of the networkly , is motivated by the following property:

Theorem 2. (Subnetwork property)If S is part of a energy global minimum of H, and
U is a global minimum of the energysf), then({,$) is a energy global minimum of
H.

In our setting, we associate the given bipartiti@1,S™) of Swith the states=
X(Sh,S7):

. B bisina; + (1—by)sinay if i €S"
x(S"S7) = {bi cosa; — (1—hj)cosay if ieS

for eachi € S. Suppose, for suitable ay, az, thatx(S™,S™) is part of a energy global
minimum of H =< W, b, a1, a2 >; then, by the subnetwork property, we can predict
the hidden part relative to neurodsby minimizing the energy ofly xs- s-)-
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5 Algorithm for GFP

In this Section we exhibit a procedure based on Hopfield nétsvior dealing with the
GFPproblem.

For a given similarity matrixV, we consider the class of netwotds=<W.b, a1, as >
on neuron¥ ={1,2,...,n}, whereas, a; are real parameters abd: {0,1}"is a dis-
crete parameter.

Fixed a functional class, an instance of GFP problem is dgiyetine matriXW and
the setsS™ andS~ of positive and negative examples. We hypothesize thag thdst a
triple (b, &1, ) such that:

1. The solution of the problem corresponds to an energy gloli@mum of H =<
W,b, a1, az >

2. X(S™,S7) is part of an energy global minimum &f

Then, by Theorem 2, we can discover the hidden paftthe global minimum by min-

imizing the energy of the networHy s+ s-). Accordingly, the procedure for solving
the GFP problem can be factorized into two main steps:

Step 1 Determine the parameter& @1, 62) such that the state(S™,S") is approx-
imately part of a global minimum by finding the parametdx,grg, a») for which
X(St,S7) is "as close as possible” to a part of an equilibrium statel of

Step 2 Minimize the energy function of the netwoHk, s+ s-) With the estimated
parametersf(, a1, Q) by reaching an equilibrium stateinl a dynamics generated
by a suitable initial state.

Finally, the solutionU*,U~) of GFP is:

Ut={ieuU |G >0}
U ={ieU |G <0}

In the following we discuss in more details Step 1 (Sectidr) &nd Step 2 (Section 5.2)
of the algorithm.

5.1 Finding the Optimal Parameters

The main goal of this step is to find the values of the parambter; anda, such that
the statex(S™,S™) is "as close as possible” to an equilibrium state.

To this end, we consider the parametrized subnetwork cestito neuronsin S, i.e.
Hs =< Wsg, b®, a1, a> >, whereb®, a; , o, are the parameter to be learned.

In the following we describe the objective function adogdt@dearning the network
parameters and the relative optimization procedure.

Objective function. First of all, we fixb®, a; , a,. Every neuroni has an “internal
energy”A;, where:

A = sina; z wixPb; + sina; Z Wik P (1 — bg)
keS keS

—cosay Y wi(1—R)bs —cosay § wi (1—R)(1—b
1%8 k( )b zkgs k( )(1—Dby)

(4)
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whereP is the characteristic vector & (i.e. P, = 1 iff k € S"). By means of\, we are
able in computing the number tue positiveTP, false negativé-N andfalse positive
FP:

-TP(b% a1, a2) = TicsPHS(A), i.e. the number of positive examples with posi-
tive internal energy (true positive)

-FN(b®% a1, a2) = TicsP(1—HS(A)), i.e. the number of positive examples with
negative internal energy (positive misclassification)

- FP(b® a1, a2) = Sics(1— R)HS(A), i.e. is the number of negative examples
with positive internal energy (negative misclassificafion

Here HS denotes the Heaviside function (MS= 1 if x > 0, 0 otherwise).
The function we want to maximize is the so calledore:

___ 2P
2TP+FP+FN

By observing that 6< Fscore < 1, this criterion is justified by the following:

l:score(b az, 0!2)

Theorem 3. Fscordb®, a1, 02) = Liff X(S™,S™) is an equilibrium state of the sub-network
Hs.

Optimization procedure. The values of parameters that maximize Fgye criterion
are: A
(bs, G1,02)= argmax  Fscordb®, 01, 02). (5)
bSc{0,1}18,a1,00

For evenyb® € {0,1}'S, we defineF (b°%) = max Fscoreb®, 01, a2). Givenb®, an approx-
1,U2

imation of F@®) can be found by applying a standard continuous optimingtimce-
dure.

In order to maximize Rf), we adopt a S|mple local search on hypercfiog }'S,
where the neighborhood bf is {b |dy (b°, b ) =1}, anddy is the Hamming distance.
Once obtained the local optimuli, we determine the optimal values foy anda; as

(61, G2) = argmax Fscore(b ,01,02).
ap,do
Havmg the optimal value$b a1,087), we want to extend the vectd to b =

(b b ), where the indices d¥" are the elements af.
With regard to this, compute for &t
A= D Wi 5 A=) Wi
ieSt ieS™
In this way, we associate with each neutoa pointR = (4,7,4,) in the plane.
Consider now the subsets of poiisandC,, where:

Ci={R:b =1 ; C,={R:b=0!
By usingCy,C, we learn two bivariate normal distributiotds (L1g, 1), No (o, 2)

where, forj = 1,2, uj andZ; are respectively the sample mean and the sample covari-
ance ofC;.
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Finally, if ke U, we setBE = 1 if and only if the probability o, according to
N2(u1,21), is greater than the probability 8, according ta\a (2, 25).

5.2 Finding the unknown labels by Network Dynamics

After the computation of the optimal paramet(eﬁs?l, 07), we consider the sub-network
Hux(st s): y
Husts) = <Wuu,b', 01,02 > (6)

with thresholds-W] x(S*,S).
Fixed an initial statey; = O for eachi € {1,2,...,h}, we run the sub-network
Huxs,s) to learn the unknown labels of neurdds
If Uis the stable state reached by this dynamics, we obtain thlesfifution U *,U )
by setting:
U = {klOx >0}, U = {Kl <0}

6 Algorithm validation

In this Section we describe the procedure for experimgnealbluate our algorithm
and we discuss the results of the comparison of the algosithimother state-of-the-art
methods.

6.1 Experimental setting

We performed predictions of gene functions at genome-vadellin theS.cerevisiae
organism (yeast), using the whole FunCat ontology f12]Ve predicted functions of
genes belonging to three different biomolecular data setgqusly adopted in[3]:

- Pfamis an enriched representation of Pfam domains by replahimbinary scor-
ing with log E-values obtained with the HMMER software tatlk his dataset
contains 3528 genes and 5724 features.

- Exprdata contains 250 gene expression measures of 4523 genes

- SP-simis a data set containing pairwise similarities between 3&26t genes rep-
resented by Smith and Waterman log-E values between all phjreast sequences

As validation procedure we adopt the 10-folds cross vabidagenes are randomly
divided into 10 equal-sized subsets, and each time theddbelgenes in a fold are
hidden and predicted using as training data the other nids.fo

1we used the funcat-2.1 scheme with the annotation datati@talata20070316, available
from: ftp://ftpmips.gsf.de/yeast/catalogues/funcatifat-2.1data20070316.
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6.2 Results

First of all, we compared our method with semi-supervised supervised machine
learning methods proposed in the literature for the GenetitamPrediction problem.
We consider: 1) th&AIN algorithm [9]; 2) Zhu-LP, a popular semi-supervised label
propagation learning algorithm based on Gaussian randdds fand its class mass
normalized versioZhu-LP-CMN[17]; 3) Support Vector Machines with linea®{M-

I) and GaussiarSVM-g kernels [10].

In order to take into account the imbalance in positive arngghtiee labels character-
izing the GFP context, we adopt tRescoreperformance measure (Sect. 5.1). Figure 1
shows for each dataset and for all the considered methoslsytirage F-score across
all the functional classes.

(=] —
—
OGAIN OZhu-LP EZhu-LP-CMN @ SVM-| W SVM-g m Our proposal
@
o
©
o
o
o
o
7}
Iy
<
o
N
o
< J 4l:d
© .
Pfam Expr Sp-sim
Data sets

Fig. 1. F-score comparison in terms of averad@gbre

Our algorithm highly outperforms in terms of average F-scalt the other com-
pared methods, and the difference is always significant a® &@nificance level, ac-
cording to the Wilcoxon signed-ranks test [15]. We thinksthésults are due to the
inherent cost-sensitive nature of the algorithm, whichbiean automatically finding
the parameters that better “re-equilibrate” the imbalandabels.

Moreover, in order to better analyze the performance of tgorahm, we evaluate
also the precision of the algorithmrecision= %, which informally is the prob-
ability that a positive prediction corresponds to a trueitp@s We point out that in
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Table 1. Precision and F-score of COSNet and of our algorithm averageoss the Funcat
functional classes.

Pfam
Met hod Pr eci si on F
COSNet 0.445 0.375
Our proposa 0.509 0.370
Expr
Met hod Pr eci si on F
COSNet 0.057 0.085
Our proposa 0.147 0.105
SP-sim
Met hod Pr eci si on F
COSNet 0.445 0.376
Our proposa 0.489 0.368

GFP context the automatic positive predictions of unknoemes need to be confirmed
by expensive experimental laboratory procedures; aceglyliachieving a high preci-

sion in predicting functions of unknown genes is centrall provides reliable clues to

experimentally check the membership of a gene to a fundtidass.

In Table 1 we show the averagptecisionandFscoreOf our algorithm and of another
cost-sensitive algorithm, COSNet, proposed in [3]. We daseove that the two algo-
rithms achieve close values Bf.ore On the other hand, the present algorithm obtains
a significant improvement in precision at= 5 10~19 significance level (Wilcoxon
signed-ranks test).

Conclusions

In this paper we propose a new algorithm for predicting natels in graph in pres-
ence of label imbalance. The algorithm is based on a familyayffield networks with
2 real parameters and 1 discrete parameter. The parametdeamed by means of a
cost-sensitive procedure, which allows to manage the iamual in data. Then the sub-
network of unlabeled nodes is simulated and the reachetlt@ui state provides the
classification of unlabeled nodes.

The algorithm has been experimentally validated on thelprolof predicting the
functions of genes in a model organism; the results, conapaith those of the state-
of-the-art methods, show the effectiveness of this apgroac

In this paper, neurons are bi-partitioned, but in principle could consider k-
partitions, increasing the number of parameters. It shbalthteresting to evaluate the
impact that the number of parameters has on the predictpepii#ies of the algorithm,
and to define the optimal number of parameters (which engarasoid overfitting)
through model selection techniques.
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