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Abstract—Gene expression is a very complex process, which
is finely regulated and modulated at different levels. The first
step of gene expression, the transcription of DNA into mRNA,
is in turn regulated both at the genetic and epigenetic level.
In particular, the latter, which involves the structure formed by
DNA wrapped around histones (chromatin), has been recently
shown to be a key factor, with post—translational modifications of
histones acting combinatorially to activate or block transcription.
In this work we addressed the problem of predicting the
level of expression of genes starting from genome-wide maps
of chromatin structure, that is, of the localization of several
different histone modifications, which have been recently made
available through the introduction of technologies like ChIP-Seq.
We formalized the problem as a multi-class bipartite ranking
problem, in which for each class a gene can be under- or over-
expressed with respect to a given reference expression value.
In order to deal with this problem, we exploit and extend a
semi—supervised method (COSNet) based on a family of Hopfield
neural networks. Benchmark tests performed on genome-wide
tests in six different human cell lines yielded satisfactory results,
with clear improvements over the alternative approach most
commonly adopted in the literature.

I. INTRODUCTION

Gene expression refers to the process of producing a protein
from sequence information encoded in DNA. It is highly reg-
ulated at different levels, including transcriptional regulation,
splicing, and modification, export, and degradation of protein
products. The first step, the regulation of the transcription of
DNA into mRNA, can take place both at the genetic and
epigenetic level. Usually, the former is defined as a direct
or indirect interaction between DNA and dedicated molecules
called transcription factors, while epigenetic regulation makes
DNA accessible to transcription factors through chemical
modifications of chromatin. The basic unit of chromatin is
structured like beads on a string, where the string is DNA and
each bead is a DNA-protein complex called a nucleosome.
Nucleosomes are in turn made of proteins called histones, and,
more in detail, by two copies of four core histones (H2A, H2B,
H3 and H4) with roughly 147 base pairs (bp) of DNA wrapped
around it (Figure 1). Several post-translational modifications,
such as methylation, acetylation, and phosphorylation, may
occur on some of the aminoacids forming the histones. These
modifications can alter the structure and function of chromatin,
in turn making DNA accessible (or blocking it) to transcription
factors and the transcriptional machinery, and allowing gene
expression to start. It has been proposed that these histone
modifications can occur combinatorially to form a ‘histone

code’ that is able to switch on or off the transcription of genes
by co—operatively altering chromatin structure in a suitable
way [1], [2], [3]. For example, methylation of lysine (K) in
position four of histone H3 (H3K4mel) or its tri-methylation
(H3K4me3) are usually associated with transcriptional acti-
vation and are localized around the transcription start site
(TSS) of genes; H3K9me3 and H3K27me3 are considered
to be responsible for transcriptional repression; H3K36me3
is usually found within the transcribed regions of active
genes [4]. Hence, the histone code seems able to mark in a
different way the parts of a transcribed gene, that is, some
modifications are associated with the TSS, others with the
region that has to be transcribed and where transcription has to
stop. Transcription starts and continues producing a RNA only
if the right combinations of histone modifications are found at
the right positions on the genome.
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Fig. 1. The structure of a nucleosome, with the eight core histones building
it.

On the other hand, while information encoded by DNA can
be considered as static, epigenetic factors are highly dynamic.
Thus, as gene expression changes according to ‘cell type’
and ‘status’ (i.e. tissue, developmental stage, external stimuli,
and so on), chromatin structure and histone modifications
change likewise. ChIP-Seq experiments, that is, chromatin
immunoprecipitation (ChIP) followed by sequencing using
next—generation technologies, are very powerful techniques
that permit to build genome—wide maps of protein—-DNA
interactions. That is, given a protein of interest which can
interact with DNA, it can be extracted from cell nuclei together



with the DNA bound to it, which in turn can be sequenced
and analyzed. Applied to histones, ChIP-Seq permits to extract
those nucleosomes which carry a specific histone modification:
in other words, it can be used to build genome—wide maps of,
for example, the position of nucleosomes where histone H3
has lysine four mono— or di— or trimethylated, and separate
maps for each of these three possibilities.

Indeed, large—scale application of ChIP-Seq in the last
few years has culminated in “whole epigenome projects” [5],
which aim to build genome wide maps of the most relevant
histone modifications in several different cell lines and tissues
for the most widely studied organisms, first of all human.
But, rather than yes/no labels marking the presence/absence
of a given modification in a given position of the genome,
ChIP-Seq experiments can produce maps of enrichment across
the whole genome. In other words, enrichment provides an
estimate of the abundance of the corresponding DNA segment
in the sample extracted from the cells studied, and thus of
the frequency with which a given histone modification can be
found associated with a given DNA region (Figure 2). Usually,
regions of interest are immediately upstream and downstream
of the transcription start site, and/or the whole transcribed
region, that is, those regions which are characterized by
different modifications.
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Fig. 2. Enrichment distribution obtained through ChIP-Seq experiments for
two different histone modifications, plotted around the TSS (coordinate 0 on
the x axis) of genes. H3K4me3 (left) is enriched in the regions flanking the
TSS for genes with high (red), and medium (green) expression levels, much
less so for those expressed at low (blue) or not expressed (purple). H3K36me3
(right) is again more enriched for expressed genes, but only in the transcribed
region (positive values on the x axis). Distances on the x axis are measured
in DNA base pairs. Transcription of the gene starts at position 0, proceeding
towards the right.

II. PREDICTING GENE EXPRESSION

The transcript (expression) level of genes, that is, how much
RNA is produced by each gene on a given genome, can be
nowadays measured with different technologies, like microar-
rays or RNA-Seq, and it is usually denoted by a real number
> 0. Clearly, 0 indicates that no transcription (expression) is
taking place. The availability of these data, crossed with those
derived from ChIP-Seq experiments, has, in turn, led quite
naturally to the following hypothesis: if chromatin structure

and histone modifications are responsible for the regulation
of transcription, and if now genome-wide maps of several
histone modifications are available, then it should be possible,
to some extent, to infer and predict the level of transcription
of genes starting from these maps, that is, predict gene
expression from chromatin structure and the relative position
of histone modifications. Indeed, even by using quite naive
approaches, it can be seen how some histone modifications,
and in particular their enrichment determined through ChIP-
Seq, yield clear correlations (or anti—correlations) with the
level of gene expression.

Starting from these observations, suitable models can be
built, that, starting from enrichment maps of different histone
modifications, can infer with good accuracy the activation of
the gene transcription and the respective level. The problem
itself can be recast in different ways, at different levels of
complexity: we could predict which genes have an expression
level > 0 versus those whose expression level is 0 (predicting
transcribed versus silent genes), or which genes are over- or
under—expressed with respect to a mean (or median, or modal)
expression value, or in detail estimate the expression level of
each gene.

In this work, we define the Gene Expression Prediction
Problem (GEP) as follows. Given a class (cell line under
fixed conditions) and the chromatin features for each gene,
the problem is inferring a ranking on genes such that high
(resp. low) ranks correspond to high (resp. low) levels of gene
transcripts. Genes with high (low) rank are then predicted be-
ing over (under)—expressed. Classes usually are not balanced,
that is, there is no guarantee to have approximately 50% of
the genes over— or under—expressed.

Since the quite recent introduction of ChIP-Seq experi-
ments, a few approaches have been proposed for the GEP
problem in the last couple of years. Most of these ap-
proaches adopt inductive methods such as linear regression
techniques [6], [7], [8]. Unfortunately, they do not take into
account the label imbalance that may characterize the class
labels, and many learning systems may suffer a decay in per-
formance when predicting on unbalanced data [9]. Moreover,
due to their time complexity, techniques like support vector
machines [10] do not properly scale on large size data, and for
most of the widely studied organisms (e.g. human), the number
of genes is considerably large. Finally, adopting supervised
machine learning methods does not take into account, during
the learning phase, the relationships existing among labeled
and unlabeled genes (that is, those genes for which we want
to make a prediction).

In order to deal with these learning issues, we propose a
semi-supervised method which adapts to GEP a recently pro-
posed algorithm to predict gene functions [12]. The method,
which is based on a family of parametrized Hopfield networks,
can be summarized as follows:

1. The network parameters are automatically learnt from the
labeled genes to deal with the data imbalance.

2. The connections among labeled and unlabeled genes are



embedded in the network.

3. The method is able to infer both the genes that are over—
expressed with respect to a given expression boundary and
the detailed gene expression levels.

4. The network dynamics is restricted solely to the genes
to be predicted, considerably reducing the time complexity.

The method has been validated in predicting the expression
level of the human genes in six different cell lines and
with a genome-wide approach, considering, in average,
more than thirty chromatin features. The results revealed
significant improvements of the method we propose w. r. t.
the approach most commonly used in the literature to predict
gene expression levels.

III. GENE EXPRESSION PREDICTION (GEP) AS
SEMI-SUPERVISED BIPARTITE RANKING PROBLEM

All in all, the GEP problem can be formalized as semi-
supervised bipartite ranking problem [13] on undirected
graphs, in which genes V' = {1,2,... n} are only partially
labeled and H is the matrix containing the histone modifica-
tions levels, where H;; is the level of histone modification j
at gene i, for each 7 € {1,2,...,n} and j € {1,2,...,m}.
The matrix H is processed in a squared similarity matrix W
by defining the component w;; as the Pearson’s correlation
coefficient of the vectors H; and H ;, and setting to zero the
diagonal and the negative components. The weight w;; € [0, 1]
represents a similarity index between genes ¢ and j, with
w;; = wj;, that is, how similar genes 7 and j are with respect
to chromatin structure and histone modifications: genes with
similar chromatin structure should yield similar expression
values. Moreover, genes V' are bipartitioned in the sets (up to a
permutation) U = {1,2,...,h} and L = {h+1,h+2,...,n}
of the unlabeled and labeled genes respectively. The label
y; € {—1, 1} of gene ¢ € L describes the known condition
of the gene 7 w. r. t. a previously fixed cell line condition: 1
stands for over—expressed, -1 for under—expressed. Moreover,
let LT ={ie Lly; =1} and L™ = {i € L|y; = —1} be the
sets of positive and negative instances respectively. We can
refer to L, L™ and W as the prior information.

The gene expression prediction problem consists of infer-
ring, on the basis of prior information, a ranking function
¢ : U — R which associates each gene ¢+ € U with an
expression value ¢(4) such that, future positive instances have
higher rank (expression value) than negative ones. From this
point of view, GEP is cast as a semi-supervised learning
problem on graphs, since gene expression profiles can be
predicted by exploiting both labeled and unlabeled nodes
(genes) and the weighted connections among them.

Finally, in order to simplify the problem, we assume that
prior information is not affected by noise. Nevertheless, it is
worth noting that usually known technologies for measuring

gene transcript levels still are affected by both experimental
and biological noise [14], [15].

IV. HOPFIELD NETWORK MODEL FOR GEP

Hopfield networks are artificial neural networks whose
dynamics admit a Lyapunov function [16]. This model has
been widely used to address different issues, including content-
addressable memory [17], [18], [19], discrete nonlinear opti-
mization [20], binary classification for protein function predic-
tion [21]. In particular, a Hopfield network—based algorithm,
COSNet, has been recently proposed to predict the biological
functions of genes, resulting among the best algorithms for this
task [11], [12]. This algorithm, originally designed to predict
gene functions, can be extended in order to predict also the
gene expression levels.

A. COSNet

Informally, COSNet is a Hopfield network model which,
unlike classical Hopfield networks, conceptually separates
labels and neuron states: neuron states are set to sina for
“positive” neurons and to —cosa for “negative” neurons,
where « is a real number in the interval [0, Z[. By auto-
matically learning from training data the parameters o and
v (which represents the activation threshold for each neuron),
this algorithm reaches accurate predictive capabilities also in
presence of highly unbalanced data [11]. More in detail, for
each functional class, a Hopfield network with neuron V' and
connection strengths encoded in the similarity matrix W is
considered. The initial state is set to u; = 0 for neurons
i € U, to l; = sina for neurons 4 € LT and to [; = — cos
for neurons in ¢ € L~. The parameters «, 7y are estimated
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Fig. 3.  Main steps of COSNet: (a) the labeled part of the network is used
to learn the near—optimal parameters; (b) the learnt parameters are extended
to the unlabeled part of the network which is simulated until convergence to
infer labels for unlabeled neurons.

on the sub—network restricted to neurons in L by an efficient
approximated algorithm (Figure 3 (a)) which preserves the
minimization of the overall energy, and then extended to the
sub—network of neurons U, which is simulated to infer a binary



prediction for unlabeled neurons (Figure 3 (b)). The network
evolves according to the following asynchronous dynamics :

i1 h
sina  if Y wiui(6)+ Y. wikur(t—1)—60; >0
j=1 k=it+1

i—1
—cosa if > wijuj(t) +
j=1

(7 (t)

wikuk(t — 1) -6, <0

1)
where wu;(t) is the value of neuron ¢ € U at time ¢ and
0; v - Z?:h 41 Wijlj is the corresponding activation
threshold, which also includes the influence on this node
of the labeled neurons L (whose values are clamped during
the network dynamics). The state of the network at time
tis w(t) = (ui(t),us(t),...,up(t)). The system admits a
Lyapunov state function named energy function:

h
—% Z Wi U; U5 + Zuﬂl
i#j i=1
It is easy to see that the dynamics (1) converges to an
equilibrium state @ which corresponds to a local minimum of
the energy function E. Finally, each neuron ¢ in U is classified
as positive if w; = sin «, as negative otherwise.

E(u) = b

B. COSNet for GEP

In our context, the approach of COSNet is motivated by
the fact that minimizing the energy defined in Equation (2)
means maximizing the weighted sum of the edges connecting
neurons with the same activation values. Even though this
model cannot rank the instances and it can just assign a
binary label {4, —} to each neuron, we can observe that
neurons “‘strongly connected” with other positive neurons tend
in turn to be positive (over—expressed), while the opposite is
true when strong connections with negative (under—expressed)
neighbors prevail. Furthermore, such an approach lets the node
labels propagate through the network, so that neurons can get
information also from non neighboring neurons. In this way
the final labeling corresponds to local and global consistency.
We can thereby effectively deal with the GEP problem by
considering the equilibrium state & reached by the network
dynamics. In order to define a ranking for genes in U, we can
associate the ranking scores with the “strength” of positive
and negative predictions. That is, some positive predicted
neurons are connected to positive neurons “more strongly”
than the others; accordingly, since in our context a positive
prediction means over—expression, these neurons should have
a higher rank. On the other hand, negative predicted neurons
with stronger negative neighbors should be in a lower rank.
Furthermore, our aim is also to define a score for each gene
which corresponds to both local and global network stability.
In this regard, we consider the energy contribution E(@;) of
a single node ¢ € U to the overall energy (2) at equilibrium:

~; Y (i — 0;) ©)
J#i

Indeed, since the energy F is minimized through the dynamics,

low values of E(w;) correspond to stable states @; for the node

E(w;)

1, and it can be interpreted as more reliable predictions. From
(3) we can derive a score ¢(i) associated to each node i:

$(i) = Y _(wiT; — ;)
J#

It is easy to see that this choice deals with the GEP ranking
requirements described in Section III. For positive predictions
(corresponding to T; = sin «), the score ¢(i) is positive and
large values of ¢(i) correspond to low values of the energy
E(w;). Note that this is true when we have a large number of
strongly connected positive nodes in the neighborhood of node
i. The opposite is true for negative predictions: the score ¢(%)
is negative and low values of ¢(i) correspond to low energy
states for the node 1.

Finally, we point out that, since the score ¢(i) depends on
the number of neighbors j (w;; # 0) of node i (node degree),
the algorithm may suffer a decay in performance when the
distribution of node degrees has a high variance. In other
words, high (resp. low) values ¢(i) may be due not solely
to a prevalence of positive (resp. negative) neighbors, but also
to a high node degree. To prevent it, we divide the score ¢(7)
by the node degree d; = Z;;l w;j, obtaining a final score
o Dgi(WiiTy — 0)
¢'(i) =

di
In summary, the method we propose predict the expression
levels of genes by assigning to each gene i € U the score ¢’ ();
on the other hand, we can also predict the under— and over—
expressed genes by means of the COSNet binary predictions.

“

5)

V. ALGORITHM VALIDATION
A. Experimental setting

Since, as briefly discussed in the introduction, gene ex-
pression as well as chromatin structure significantly changes
according to the type of cell/tissue and/or external stimuli,
we validated the algorithm by predicting expression of 12018
human RefSeq genes in six different cell lines, taking ad-
vantage of the data produced in the ENCODE project[22]
and made available through the UCSC Genome Browser
database[23]. We considered the cell lines with the highest
number of genome—wide histone modifications maps available
(at least 10) and with expression data available as well. Each
histone modification was then associated with each gene by
considering the enrichment averaged 1) in the region 500 bp
upstream of the TSS; 2) in the region 500 bp downstream
of the TSS, and 3) in the whole transcribed region. Each
modification, thus, yielded three separate features for each
gene. Since genes annotated in complex organisms like human
might overlap one another, we considered only genes that
did not overlap others in the transcribed region. It is worth
mentioning that, although as in the examples shown in Figure 2
preferred enrichment regions are known for several histone
modifications (e.g. H3K4me3 for the regions flanking the TSS;
H3K36me3 for the transcribed region), we did not introduce
in our model any prior knowledge of this kind. The cell lines
and the corresponding number of features are listed in Table I,



together with the number of histone modifications available for
each (Table II).

TABLE I
CELL LINES ADOPTED IN THE EXPERIMENTAL VALIDATION OF THE
ALGORITHM, AND THE CORRESPONDING NUMBER OF CHROMATIN
FEATURES AVAILABLE.

[ Cell line | Description | Features |
H1 hESC Human embryonic stem cells 33
HepG2 Cell line derived from patient
with liver carcinoma 33
HeLa-S3 Immortalized cell line derived
from a cervical cancer patient 33
GM12878 Lymphoblastoid cell line
produced by EBV
transformation 33
HUVEC Human umbilical vein
endothelial cells 33
K562 Immortalized cell line produced
from a patient with
chronic myelogenous leukemia 54

B. Preprocessing

The matrix similarity W has been thresholded by ensuring
each row has at least a non zero component. Then, the
thresholded matrix has been normalized as follows:

W=T:WT:
where T is a diagonal matrix in which T;; = > y W;; for each

1 € {1,2,...,n}. Observe that W is still symmetric.

In order to define gene labels, we once again took advan-
tage of the ENCODE data at the UCSC Genome Browser
database[23]. We retrieved the RNA-Seq signal map for
the six cell lines considered, and estimated the expression
(transcription) level of each gene by computing the mean
RNA-Seq signal across the exons of the gene. This yielded the
expression vector y = (y1,¥2, .., Yn). Then, we transformed
each component of the exgression vector to a logarithmic
scale, with ¢; = log((yz—ﬂ), where 1, is the mean value
of vector y. We added 1 to each expression value in order to
assure the logarithm would always be defined. Finally, each
component §J; has been scaled in the [—1, 1] interval by setting
Y = % — 1. The resulting expression vector y’
is transformed in a binary vector by setting a threshold %,
such that the components y, > t, are scaled in ]0,1] and
the components y, < t, are scaled in the interval [—1,0],
obtaining in this way a new vector y. In order to define ¢,,
we adopted two different criteria: in the first (C1) we simply
set £, = 0. The second one (C2) derives from a further analysis
of the distribution of gene expression values y’, shown in
Figure 4 for the HI hESC cell line. We can observe a bimodal
distribution, and, accordingly, two categories of genes can
be defined: genes whose expression is lower than the value
corresponding to the local minimum (marked by the vertical
line) between the modal peaks, and genes whose expression
is greater than this value. In C2 we set ¢, equal to this value,

TABLE II
DETAILS OF THE FEATURES EMPLOYED IN EACH CELL LINE ANALYZED.
FOR FIVE CELL LINES WE EMPLOYED HISTONE MODIFICATIONS ONLY,
WHILE K562 ALSO INCLUDES GENOME—WIDE BINDING MAPS FOR
HISTONE—-MODIFYING AND CHROMATIN—REMODELLING PROTEINS
(HDAC15C6298, HDAC2A300705A, P300 M PHF8A301772A, PLUI,

SAP3039731)
[ Cell line | Histone Modification |

H1 hESC H2az, H3k9me3, H3k27ac
HepG2 H3k27me3, H3k36me3, H3k4mel
HeLa-S3 H3k4me2, H3k4me3, H3k79me2
GM12878 H3k9ac, H4k20mel

HUVEC

K562 H2az, H3k27ac, H3k27me3

H3k36me3, H3k4mel, H3k4me2
H3k4me3, H3k79me2, H3k9ac
H3k9mel, H3k9me3, H4k20mel
Hdac1sc6298, Hdac2a300705a, P300
Phf8a301772a, Plul, Sap3039731

thus defining two classes of over— and under—expressed genes.
While the bimodal distribution appears in every cell line, the
local minimum value is clearly cell line—specific.
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Fig. 4. Expression level distribution of genes in the H1 hESC cell line. The
vertical line marks the boundary (expression value) for over—expressed genes.

Finally, we defined the label s; for each gene 7 such that
s; = 1 iff gene J; > 0, s; = —1 otherwise.

C. Learning task

We applied our algorithm with a 10-fold (randomly chosen)
cross validation procedure, in which at each step the binary
labels of a fold are hidden and the corresponding expression
levels and binary labels predicted by using the other nine fold
as training set. We set the regularization parameter of the
algorithm as 8 = 0.0001, as suggested in [11]. We employed
as performance measures the Pearson’s correlation between
the measured y and predicted expression values, and accuracy
in the prediction of the two classes of genes.

D. Results

We compared our method with the linear regression algo-
rithm (LinReg), a widely used algorithm in the context of



gene expression prediction [6], [7], [8]. We used the linear
regression algorithm implementation provided by the /m func-
tion of the R package stats. Figure 5 shows a summary of the
results. Most of the experiments reveal a strong correlation for

1.0
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Fig. 5. Performance comparison between linear regression and our approach
in terms of Pearson’s correlation coefficient between the measured and
predicted expression values in all the six considered cell lines. The results
relative to both the adopted criterions C1 and C2 to define the threshold ¢,
are shown.

COSNet between the predicted and measured expression levels
for both the two thresholding criteria employed (median 0.818
and 0.844 for C1 and C2, respectively), with C2 performing
slightly better than C1 in all the data sets. Moreover, the
LinReg algorithm achieves significantly worse results in all
the cell lines and with both criteria. Since COSNet is also
a binary classifier, in Table III we also report the accuracy
and the number of positive instances (those considered over—
expressed) for each experiment, which obviously changes
according to ¢,. COSNet significantly outperforms the LinReg
algorithm also in terms of accuracy, that for the LinReg has
been computed by scaling the predicted expression values in
the [—1, 1] interval, and then considering over—expressed those
genes with a positive predicted expression (we remark that
this choice may be suboptimal, and more refined strategies
may lead to better accuracies). The choice of ¢, according to
criterion C1 leads to unbalanced data, and we can observe a
decay of performance in terms of accuracy for both algorithms
(median 0.603 and 0.874) w. r. t. the results obtained by

adopting criterion C2 (median 0.858 and 0.890), where the
labels are more balanced. This is not surprising, since it is
well known that the class imbalance affects the performances
of several classification systems [9]. Nevertheless, we can
observe that, since we adopted a cost-sensitive algorithm, the
accuracy obtained by our method on balanced and unbalanced
data are comparable, whereas LinReg achieves a significantly
worse accuracy on unbalanced data.

TABLE III
PREDICTION PERFORMANCE IN TERMS OF ACCURACY (A) AND
PEARSON’S CORRELATION COEFFICIENT (PC). FOR EACH EXPERIMENT
ARE ALSO SHOWN THE NUMBER OF POSITIVE INSTANCES W. R. T. THE
DIFFERENT VALUES OF ty,.

[ Data set | LinReg [ COSNet [ t, [ Pos |
A PC A PC Cl
H1 hESC 0.550 | 0.764 | 0.848 | 0.779 0 1479
HepG2 0.582 | 0.765 | 0.897 | 0.820 0 886
HeLa-S3 0.682 | 0.790 | 0.817 | 0.839 0 1685
GM12878 0.635 | 0.804 | 0.871 | 0.826 0 1227
HUVEC 0.592 | 0.770 | 0.878 | 0.816 0 1215
K562 0.614 | 0.729 | 0.925 | 0.814 0 628
A PC A PC C2
H1 hESC 0.859 | 0.718 | 0.866 | 0.791 | -0.83 | 7668
HepG2 0.852 | 0.735 | 0.895 | 0.858 | -0.615 | 5448
Hela-S3 0.895 | 0.764 | 0.902 | 0.864 | -0.74 | 5625
GM12878 0.857 | 0.780 | 0.889 | 0.838 | -0.545 | 4940
HUVEC 0.847 | 0.769 | 0.872 | 0.845 | -0.64 | 5507
K562 0.881 | 0.663 | 0.890 | 0.844 | -0.65 | 5832

Finally we point out that the COSNet algorithm is efficient
and scales nicely on large size data, since the time complexity
is quasi—linear in the number of considered instances when the
input matrix W is sparse [11]. This is fundamental in problems
like GEP, where the number of genes is large. In Table IV we
also report the time in seconds needed by the algorithm to
perform 10—fold cross validations for each separate data set
on a Linux system with 64 Gb RAM and Intel Xeon CPU
2.00GHz. As we expected, the method is fast, taking for each
dataset around one minute to complete the computation.

TABLE IV
TIME IN TERMS OF SECONDS NEEDED BY COSNET TO PERFORM
10-FOLDS CROSS VALIDATION IN EACH SEPARATE EXPERIMENT.

[ Data set [ Time (sec) |

H1 hESC 77.335
HepG2 71.82
Hela-S3 67.563

GM12878 73.267
HUVEC 68.516

K562 64.24

VI. CONCLUSION

In this paper we introduced a method to predict gene
expression levels starting from chromatin structure and histone



modifications maps, by considering their correlation with gene
expression. We formalized the problem as bipartite ranking
on undirected graphs, and employed parametrized Hopfield
networks to infer a ranking for the studied genes. We validated
the algorithm by predicting the genome—wide gene expression
levels in six different human cell lines. We compared our
method with a widely used technique to predict the expression
level of genes, obtaining considerably higher accuracy and
correlation in all the cell lines we considered. Moreover, the
algorithm is also efficient and nicely scales on large size
data, permitting its straightforward application at the whole—
genome level for virtually all the most studied organisms,
beside human. Finally, in the benchmark tests we performed
each cell line has been processed independently from the
others, that is, without considering the existing relationships
among the expression profiles of different cell lines. The next
logical step is embedding these relationships in the model,
and to exploit them for the prediction tasks, with possible
significant improvements on the performance of the algorithm.
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