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Abstract—Gene expression is a very complex process, which
is finely regulated and modulated at different levels. The first
step of gene expression, the transcription of DNA into mRNA,
is in turn regulated both at the genetic and epigenetic level.
In particular, the latter, which involves the structure formed by
DNA wrapped around histones (chromatin), has been recently
shown to be a key factor, with post–translational modifications of
histones acting combinatorially to activate or block transcription.
In this work we addressed the problem of predicting the
level of expression of genes starting from genome–wide maps
of chromatin structure, that is, of the localization of several
different histone modifications, which have been recently made
available through the introduction of technologies like ChIP–Seq.
We formalized the problem as a multi–class bipartite ranking
problem, in which for each class a gene can be under– or over–
expressed with respect to a given reference expression value.
In order to deal with this problem, we exploit and extend a
semi–supervised method (COSNet) based on a family of Hopfield
neural networks. Benchmark tests performed on genome–wide
tests in six different human cell lines yielded satisfactory results,
with clear improvements over the alternative approach most
commonly adopted in the literature.

I. INTRODUCTION

Gene expression refers to the process of producing a protein

from sequence information encoded in DNA. It is highly reg-

ulated at different levels, including transcriptional regulation,

splicing, and modification, export, and degradation of protein

products. The first step, the regulation of the transcription of

DNA into mRNA, can take place both at the genetic and

epigenetic level. Usually, the former is defined as a direct

or indirect interaction between DNA and dedicated molecules

called transcription factors, while epigenetic regulation makes

DNA accessible to transcription factors through chemical

modifications of chromatin. The basic unit of chromatin is

structured like beads on a string, where the string is DNA and

each bead is a DNA–protein complex called a nucleosome.

Nucleosomes are in turn made of proteins called histones, and,

more in detail, by two copies of four core histones (H2A, H2B,

H3 and H4) with roughly 147 base pairs (bp) of DNA wrapped

around it (Figure 1). Several post-translational modifications,

such as methylation, acetylation, and phosphorylation, may

occur on some of the aminoacids forming the histones. These

modifications can alter the structure and function of chromatin,

in turn making DNA accessible (or blocking it) to transcription

factors and the transcriptional machinery, and allowing gene

expression to start. It has been proposed that these histone

modifications can occur combinatorially to form a ‘histone

code’ that is able to switch on or off the transcription of genes

by co–operatively altering chromatin structure in a suitable

way [1], [2], [3]. For example, methylation of lysine (K) in

position four of histone H3 (H3K4me1) or its tri-methylation

(H3K4me3) are usually associated with transcriptional acti-

vation and are localized around the transcription start site

(TSS) of genes; H3K9me3 and H3K27me3 are considered

to be responsible for transcriptional repression; H3K36me3

is usually found within the transcribed regions of active

genes [4]. Hence, the histone code seems able to mark in a

different way the parts of a transcribed gene, that is, some

modifications are associated with the TSS, others with the

region that has to be transcribed and where transcription has to

stop. Transcription starts and continues producing a RNA only

if the right combinations of histone modifications are found at

the right positions on the genome.

Fig. 1. The structure of a nucleosome, with the eight core histones building
it.

On the other hand, while information encoded by DNA can

be considered as static, epigenetic factors are highly dynamic.

Thus, as gene expression changes according to ‘cell type’

and ‘status’ (i.e. tissue, developmental stage, external stimuli,

and so on), chromatin structure and histone modifications

change likewise. ChIP–Seq experiments, that is, chromatin

immunoprecipitation (ChIP) followed by sequencing using

next–generation technologies, are very powerful techniques

that permit to build genome–wide maps of protein–DNA

interactions. That is, given a protein of interest which can

interact with DNA, it can be extracted from cell nuclei together



with the DNA bound to it, which in turn can be sequenced

and analyzed. Applied to histones, ChIP–Seq permits to extract

those nucleosomes which carry a specific histone modification:

in other words, it can be used to build genome–wide maps of,

for example, the position of nucleosomes where histone H3

has lysine four mono– or di– or trimethylated, and separate

maps for each of these three possibilities.

Indeed, large–scale application of ChIP-Seq in the last

few years has culminated in “whole epigenome projects” [5],

which aim to build genome wide maps of the most relevant

histone modifications in several different cell lines and tissues

for the most widely studied organisms, first of all human.

But, rather than yes/no labels marking the presence/absence

of a given modification in a given position of the genome,

ChIP–Seq experiments can produce maps of enrichment across

the whole genome. In other words, enrichment provides an

estimate of the abundance of the corresponding DNA segment

in the sample extracted from the cells studied, and thus of

the frequency with which a given histone modification can be

found associated with a given DNA region (Figure 2). Usually,

regions of interest are immediately upstream and downstream

of the transcription start site, and/or the whole transcribed

region, that is, those regions which are characterized by

different modifications.

Fig. 2. Enrichment distribution obtained through ChIP–Seq experiments for
two different histone modifications, plotted around the TSS (coordinate 0 on
the x axis) of genes. H3K4me3 (left) is enriched in the regions flanking the
TSS for genes with high (red), and medium (green) expression levels, much
less so for those expressed at low (blue) or not expressed (purple). H3K36me3
(right) is again more enriched for expressed genes, but only in the transcribed
region (positive values on the x axis). Distances on the x axis are measured
in DNA base pairs. Transcription of the gene starts at position 0, proceeding
towards the right.

II. PREDICTING GENE EXPRESSION

The transcript (expression) level of genes, that is, how much

RNA is produced by each gene on a given genome, can be

nowadays measured with different technologies, like microar-

rays or RNA-Seq, and it is usually denoted by a real number

≥ 0. Clearly, 0 indicates that no transcription (expression) is

taking place. The availability of these data, crossed with those

derived from ChIP–Seq experiments, has, in turn, led quite

naturally to the following hypothesis: if chromatin structure

and histone modifications are responsible for the regulation

of transcription, and if now genome–wide maps of several

histone modifications are available, then it should be possible,

to some extent, to infer and predict the level of transcription

of genes starting from these maps, that is, predict gene

expression from chromatin structure and the relative position

of histone modifications. Indeed, even by using quite naı̈ve

approaches, it can be seen how some histone modifications,

and in particular their enrichment determined through ChIP–

Seq, yield clear correlations (or anti–correlations) with the

level of gene expression.

Starting from these observations, suitable models can be

built, that, starting from enrichment maps of different histone

modifications, can infer with good accuracy the activation of

the gene transcription and the respective level. The problem

itself can be recast in different ways, at different levels of

complexity: we could predict which genes have an expression

level > 0 versus those whose expression level is 0 (predicting

transcribed versus silent genes), or which genes are over- or

under–expressed with respect to a mean (or median, or modal)

expression value, or in detail estimate the expression level of

each gene.

In this work, we define the Gene Expression Prediction

Problem (GEP) as follows. Given a class (cell line under

fixed conditions) and the chromatin features for each gene,

the problem is inferring a ranking on genes such that high

(resp. low) ranks correspond to high (resp. low) levels of gene

transcripts. Genes with high (low) rank are then predicted be-

ing over (under)–expressed. Classes usually are not balanced,

that is, there is no guarantee to have approximately 50% of

the genes over– or under–expressed.

Since the quite recent introduction of ChIP–Seq experi-

ments, a few approaches have been proposed for the GEP

problem in the last couple of years. Most of these ap-

proaches adopt inductive methods such as linear regression

techniques [6], [7], [8]. Unfortunately, they do not take into

account the label imbalance that may characterize the class

labels, and many learning systems may suffer a decay in per-

formance when predicting on unbalanced data [9]. Moreover,

due to their time complexity, techniques like support vector

machines [10] do not properly scale on large size data, and for

most of the widely studied organisms (e.g. human), the number

of genes is considerably large. Finally, adopting supervised

machine learning methods does not take into account, during

the learning phase, the relationships existing among labeled

and unlabeled genes (that is, those genes for which we want

to make a prediction).

In order to deal with these learning issues, we propose a

semi-supervised method which adapts to GEP a recently pro-

posed algorithm to predict gene functions [12]. The method,

which is based on a family of parametrized Hopfield networks,

can be summarized as follows:

1. The network parameters are automatically learnt from the

labeled genes to deal with the data imbalance.

2. The connections among labeled and unlabeled genes are



embedded in the network.

3. The method is able to infer both the genes that are over–

expressed with respect to a given expression boundary and

the detailed gene expression levels.

4. The network dynamics is restricted solely to the genes

to be predicted, considerably reducing the time complexity.

The method has been validated in predicting the expression

level of the human genes in six different cell lines and

with a genome–wide approach, considering, in average,

more than thirty chromatin features. The results revealed

significant improvements of the method we propose w. r. t.

the approach most commonly used in the literature to predict

gene expression levels.

III. GENE EXPRESSION PREDICTION (GEP) AS

SEMI-SUPERVISED BIPARTITE RANKING PROBLEM

All in all, the GEP problem can be formalized as semi-

supervised bipartite ranking problem [13] on undirected

graphs, in which genes V = {1, 2, . . . , n} are only partially

labeled and H is the matrix containing the histone modifica-

tions levels, where Hij is the level of histone modification j

at gene i, for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.

The matrix H is processed in a squared similarity matrix W

by defining the component wij as the Pearson’s correlation

coefficient of the vectors H i and Hj , and setting to zero the

diagonal and the negative components. The weight wij ∈ [0, 1]
represents a similarity index between genes i and j, with

wij = wji, that is, how similar genes i and j are with respect

to chromatin structure and histone modifications: genes with

similar chromatin structure should yield similar expression

values. Moreover, genes V are bipartitioned in the sets (up to a

permutation) U = {1, 2, . . . , h} and L = {h+1, h+2, . . . , n}
of the unlabeled and labeled genes respectively. The label

yi ∈ {−1, 1} of gene i ∈ L describes the known condition

of the gene i w. r. t. a previously fixed cell line condition: 1

stands for over–expressed, -1 for under–expressed. Moreover,

let L+ = {i ∈ L|yi = 1} and L− = {i ∈ L|yi = −1} be the

sets of positive and negative instances respectively. We can

refer to L+, L− and W as the prior information.

The gene expression prediction problem consists of infer-

ring, on the basis of prior information, a ranking function

φ : U −→ R which associates each gene i ∈ U with an

expression value φ(i) such that, future positive instances have

higher rank (expression value) than negative ones. From this

point of view, GEP is cast as a semi-supervised learning

problem on graphs, since gene expression profiles can be

predicted by exploiting both labeled and unlabeled nodes

(genes) and the weighted connections among them.

Finally, in order to simplify the problem, we assume that

prior information is not affected by noise. Nevertheless, it is

worth noting that usually known technologies for measuring

gene transcript levels still are affected by both experimental

and biological noise [14], [15].

IV. HOPFIELD NETWORK MODEL FOR GEP

Hopfield networks are artificial neural networks whose

dynamics admit a Lyapunov function [16]. This model has

been widely used to address different issues, including content-

addressable memory [17], [18], [19], discrete nonlinear opti-

mization [20], binary classification for protein function predic-

tion [21]. In particular, a Hopfield network–based algorithm,

COSNet, has been recently proposed to predict the biological

functions of genes, resulting among the best algorithms for this

task [11], [12]. This algorithm, originally designed to predict

gene functions, can be extended in order to predict also the

gene expression levels.

A. COSNet

Informally, COSNet is a Hopfield network model which,

unlike classical Hopfield networks, conceptually separates

labels and neuron states: neuron states are set to sinα for

“positive” neurons and to − cosα for “negative” neurons,

where α is a real number in the interval [0, π2 [. By auto-

matically learning from training data the parameters α and

γ (which represents the activation threshold for each neuron),

this algorithm reaches accurate predictive capabilities also in

presence of highly unbalanced data [11]. More in detail, for

each functional class, a Hopfield network with neuron V and

connection strengths encoded in the similarity matrix W is

considered. The initial state is set to ui = 0 for neurons

i ∈ U , to li = sinα for neurons i ∈ L+ and to li = − cosα
for neurons in i ∈ L−. The parameters α, γ are estimated

Fig. 3. Main steps of COSNet: (a) the labeled part of the network is used
to learn the near–optimal parameters; (b) the learnt parameters are extended
to the unlabeled part of the network which is simulated until convergence to
infer labels for unlabeled neurons.

on the sub–network restricted to neurons in L by an efficient

approximated algorithm (Figure 3 (a)) which preserves the

minimization of the overall energy, and then extended to the

sub–network of neurons U , which is simulated to infer a binary



prediction for unlabeled neurons (Figure 3 (b)). The network

evolves according to the following asynchronous dynamics :

ui(t) =















sinα if
i−1∑

j=1

wijuj(t) +
h∑

k=i+1

wikuk(t− 1)− θi > 0

− cosα if
i−1∑

j=1

wijuj(t) +
h∑

k=i+1

wikuk(t− 1)− θi ≤ 0

(1)

where ui(t) is the value of neuron i ∈ U at time t and

θi = γ −
∑n

j=h+1 wij lj is the corresponding activation

threshold, which also includes the influence on this node

of the labeled neurons L (whose values are clamped during

the network dynamics). The state of the network at time

t is u(t) = (u1(t), u2(t), . . . , uh(t)). The system admits a

Lyapunov state function named energy function:

E(u) = −
1

2

∑

i6=j

wijuiuj +
h
∑

i=1

uiθi (2)

It is easy to see that the dynamics (1) converges to an

equilibrium state u which corresponds to a local minimum of

the energy function E. Finally, each neuron i in U is classified

as positive if ui = sinα, as negative otherwise.

B. COSNet for GEP

In our context, the approach of COSNet is motivated by

the fact that minimizing the energy defined in Equation (2)

means maximizing the weighted sum of the edges connecting

neurons with the same activation values. Even though this

model cannot rank the instances and it can just assign a

binary label {+,−} to each neuron, we can observe that

neurons “strongly connected” with other positive neurons tend

in turn to be positive (over–expressed), while the opposite is

true when strong connections with negative (under–expressed)

neighbors prevail. Furthermore, such an approach lets the node

labels propagate through the network, so that neurons can get

information also from non neighboring neurons. In this way

the final labeling corresponds to local and global consistency.

We can thereby effectively deal with the GEP problem by

considering the equilibrium state u reached by the network

dynamics. In order to define a ranking for genes in U , we can

associate the ranking scores with the “strength” of positive

and negative predictions. That is, some positive predicted

neurons are connected to positive neurons “more strongly”

than the others; accordingly, since in our context a positive

prediction means over–expression, these neurons should have

a higher rank. On the other hand, negative predicted neurons

with stronger negative neighbors should be in a lower rank.

Furthermore, our aim is also to define a score for each gene

which corresponds to both local and global network stability.

In this regard, we consider the energy contribution E(ui) of

a single node i ∈ U to the overall energy (2) at equilibrium:

E(ui) = −ui

∑

j 6=i

(wijuj − θi) (3)

Indeed, since the energy E is minimized through the dynamics,

low values of E(ui) correspond to stable states ui for the node

i, and it can be interpreted as more reliable predictions. From

(3) we can derive a score φ(i) associated to each node i:

φ(i) =
∑

j 6=i

(wijuj − θi) (4)

It is easy to see that this choice deals with the GEP ranking

requirements described in Section III. For positive predictions

(corresponding to ui = sinα), the score φ(i) is positive and

large values of φ(i) correspond to low values of the energy

E(ui). Note that this is true when we have a large number of

strongly connected positive nodes in the neighborhood of node

i. The opposite is true for negative predictions: the score φ(i)
is negative and low values of φ(i) correspond to low energy

states for the node i.

Finally, we point out that, since the score φ(i) depends on

the number of neighbors j (wij 6= 0) of node i (node degree),

the algorithm may suffer a decay in performance when the

distribution of node degrees has a high variance. In other

words, high (resp. low) values φ(i) may be due not solely

to a prevalence of positive (resp. negative) neighbors, but also

to a high node degree. To prevent it, we divide the score φ(i)
by the node degree di =

∑n

j=1 wij , obtaining a final score

φ′(i) =

∑

j 6=i(wijuj − θi)

di
(5)

In summary, the method we propose predict the expression

levels of genes by assigning to each gene i ∈ U the score φ′(i);
on the other hand, we can also predict the under– and over–

expressed genes by means of the COSNet binary predictions.

V. ALGORITHM VALIDATION

A. Experimental setting

Since, as briefly discussed in the introduction, gene ex-

pression as well as chromatin structure significantly changes

according to the type of cell/tissue and/or external stimuli,

we validated the algorithm by predicting expression of 12018

human RefSeq genes in six different cell lines, taking ad-

vantage of the data produced in the ENCODE project[22]

and made available through the UCSC Genome Browser

database[23]. We considered the cell lines with the highest

number of genome–wide histone modifications maps available

(at least 10) and with expression data available as well. Each

histone modification was then associated with each gene by

considering the enrichment averaged 1) in the region 500 bp

upstream of the TSS; 2) in the region 500 bp downstream

of the TSS, and 3) in the whole transcribed region. Each

modification, thus, yielded three separate features for each

gene. Since genes annotated in complex organisms like human

might overlap one another, we considered only genes that

did not overlap others in the transcribed region. It is worth

mentioning that, although as in the examples shown in Figure 2

preferred enrichment regions are known for several histone

modifications (e.g. H3K4me3 for the regions flanking the TSS;

H3K36me3 for the transcribed region), we did not introduce

in our model any prior knowledge of this kind. The cell lines

and the corresponding number of features are listed in Table I,



together with the number of histone modifications available for

each (Table II).

TABLE I
CELL LINES ADOPTED IN THE EXPERIMENTAL VALIDATION OF THE

ALGORITHM, AND THE CORRESPONDING NUMBER OF CHROMATIN

FEATURES AVAILABLE.

Cell line Description Features

H1 hESC Human embryonic stem cells 33

HepG2 Cell line derived from patient
with liver carcinoma 33

HeLa-S3 Immortalized cell line derived
from a cervical cancer patient 33

GM12878 Lymphoblastoid cell line
produced by EBV

transformation 33

HUVEC Human umbilical vein
endothelial cells 33

K562 Immortalized cell line produced
from a patient with

chronic myelogenous leukemia 54

B. Preprocessing

The matrix similarity W has been thresholded by ensuring

each row has at least a non zero component. Then, the

thresholded matrix has been normalized as follows:

Ŵ = T− 1

2WT− 1

2

where T is a diagonal matrix in which Tii =
∑

j Wij for each

i ∈ {1, 2, ..., n}. Observe that Ŵ is still symmetric.

In order to define gene labels, we once again took advan-

tage of the ENCODE data at the UCSC Genome Browser

database[23]. We retrieved the RNA–Seq signal map for

the six cell lines considered, and estimated the expression

(transcription) level of each gene by computing the mean

RNA–Seq signal across the exons of the gene. This yielded the

expression vector y = (y1, y2, . . . , yn). Then, we transformed

each component of the expression vector to a logarithmic

scale, with ŷi = log( (yi+1)
µy

), where µy is the mean value

of vector y. We added 1 to each expression value in order to

assure the logarithm would always be defined. Finally, each

component ŷi has been scaled in the [−1, 1] interval by setting

y′i = (ŷi−min ŷ)∗2
max ŷ−min ŷ

− 1. The resulting expression vector y′

is transformed in a binary vector by setting a threshold ty
such that the components y′i > ty are scaled in ]0, 1] and

the components y′i ≤ ty are scaled in the interval [−1, 0],
obtaining in this way a new vector y. In order to define ty,

we adopted two different criteria: in the first (C1) we simply

set ty = 0. The second one (C2) derives from a further analysis

of the distribution of gene expression values y′, shown in

Figure 4 for the H1 hESC cell line. We can observe a bimodal

distribution, and, accordingly, two categories of genes can

be defined: genes whose expression is lower than the value

corresponding to the local minimum (marked by the vertical

line) between the modal peaks, and genes whose expression

is greater than this value. In C2 we set ty equal to this value,

TABLE II
DETAILS OF THE FEATURES EMPLOYED IN EACH CELL LINE ANALYZED.
FOR FIVE CELL LINES WE EMPLOYED HISTONE MODIFICATIONS ONLY,

WHILE K562 ALSO INCLUDES GENOME–WIDE BINDING MAPS FOR

HISTONE–MODIFYING AND CHROMATIN–REMODELLING PROTEINS

(HDAC1SC6298, HDAC2A300705A, P300 M PHF8A301772A, PLU1,
SAP3039731)

Cell line Histone Modification

H1 hESC H2az, H3k9me3, H3k27ac
HepG2 H3k27me3, H3k36me3, H3k4me1

HeLa-S3 H3k4me2, H3k4me3, H3k79me2
GM12878 H3k9ac, H4k20me1
HUVEC

K562 H2az, H3k27ac, H3k27me3
H3k36me3, H3k4me1, H3k4me2
H3k4me3, H3k79me2, H3k9ac

H3k9me1, H3k9me3, H4k20me1
Hdac1sc6298, Hdac2a300705a, P300

Phf8a301772a, Plu1, Sap3039731

thus defining two classes of over– and under–expressed genes.

While the bimodal distribution appears in every cell line, the

local minimum value is clearly cell line–specific.
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Fig. 4. Expression level distribution of genes in the H1 hESC cell line. The
vertical line marks the boundary (expression value) for over–expressed genes.

Finally, we defined the label si for each gene i such that

si = 1 iff gene yi > 0, si = −1 otherwise.

C. Learning task

We applied our algorithm with a 10-fold (randomly chosen)

cross validation procedure, in which at each step the binary

labels of a fold are hidden and the corresponding expression

levels and binary labels predicted by using the other nine fold

as training set. We set the regularization parameter of the

algorithm as β = 0.0001, as suggested in [11]. We employed

as performance measures the Pearson’s correlation between

the measured y and predicted expression values, and accuracy

in the prediction of the two classes of genes.

D. Results

We compared our method with the linear regression algo-

rithm (LinReg), a widely used algorithm in the context of



gene expression prediction [6], [7], [8]. We used the linear

regression algorithm implementation provided by the lm func-

tion of the R package stats. Figure 5 shows a summary of the

results. Most of the experiments reveal a strong correlation for
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Fig. 5. Performance comparison between linear regression and our approach
in terms of Pearson’s correlation coefficient between the measured and
predicted expression values in all the six considered cell lines. The results
relative to both the adopted criterions C1 and C2 to define the threshold ty

are shown.

COSNet between the predicted and measured expression levels

for both the two thresholding criteria employed (median 0.818

and 0.844 for C1 and C2, respectively), with C2 performing

slightly better than C1 in all the data sets. Moreover, the

LinReg algorithm achieves significantly worse results in all

the cell lines and with both criteria. Since COSNet is also

a binary classifier, in Table III we also report the accuracy

and the number of positive instances (those considered over–

expressed) for each experiment, which obviously changes

according to ty . COSNet significantly outperforms the LinReg

algorithm also in terms of accuracy, that for the LinReg has

been computed by scaling the predicted expression values in

the [−1, 1] interval, and then considering over–expressed those

genes with a positive predicted expression (we remark that

this choice may be suboptimal, and more refined strategies

may lead to better accuracies). The choice of ty according to

criterion C1 leads to unbalanced data, and we can observe a

decay of performance in terms of accuracy for both algorithms

(median 0.603 and 0.874) w. r. t. the results obtained by

adopting criterion C2 (median 0.858 and 0.890), where the

labels are more balanced. This is not surprising, since it is

well known that the class imbalance affects the performances

of several classification systems [9]. Nevertheless, we can

observe that, since we adopted a cost-sensitive algorithm, the

accuracy obtained by our method on balanced and unbalanced

data are comparable, whereas LinReg achieves a significantly

worse accuracy on unbalanced data.

TABLE III
PREDICTION PERFORMANCE IN TERMS OF ACCURACY (A) AND

PEARSON’S CORRELATION COEFFICIENT (PC). FOR EACH EXPERIMENT

ARE ALSO SHOWN THE NUMBER OF POSITIVE INSTANCES W. R. T. THE

DIFFERENT VALUES OF ty .

Data set LinReg COSNet ty Pos

A PC A PC C1

H1 hESC 0.550 0.764 0.848 0.779 0 1479

HepG2 0.582 0.765 0.897 0.820 0 886

HeLa-S3 0.682 0.790 0.817 0.839 0 1685

GM12878 0.635 0.804 0.871 0.826 0 1227

HUVEC 0.592 0.770 0.878 0.816 0 1215

K562 0.614 0.729 0.925 0.814 0 628

A PC A PC C2

H1 hESC 0.859 0.718 0.866 0.791 -0.83 7668

HepG2 0.852 0.735 0.895 0.858 -0.615 5448

Hela-S3 0.895 0.764 0.902 0.864 -0.74 5625

GM12878 0.857 0.780 0.889 0.838 -0.545 4940

HUVEC 0.847 0.769 0.872 0.845 -0.64 5507

K562 0.881 0.663 0.890 0.844 -0.65 5832

Finally we point out that the COSNet algorithm is efficient

and scales nicely on large size data, since the time complexity

is quasi–linear in the number of considered instances when the

input matrix W is sparse [11]. This is fundamental in problems

like GEP, where the number of genes is large. In Table IV we

also report the time in seconds needed by the algorithm to

perform 10–fold cross validations for each separate data set

on a Linux system with 64 Gb RAM and Intel Xeon CPU

2.00GHz. As we expected, the method is fast, taking for each

dataset around one minute to complete the computation.

TABLE IV
TIME IN TERMS OF SECONDS NEEDED BY COSNET TO PERFORM

10-FOLDS CROSS VALIDATION IN EACH SEPARATE EXPERIMENT.

Data set Time (sec)

H1 hESC 77.335

HepG2 71.82

Hela-S3 67.563

GM12878 73.267

HUVEC 68.516

K562 64.24

VI. CONCLUSION

In this paper we introduced a method to predict gene

expression levels starting from chromatin structure and histone



modifications maps, by considering their correlation with gene

expression. We formalized the problem as bipartite ranking

on undirected graphs, and employed parametrized Hopfield

networks to infer a ranking for the studied genes. We validated

the algorithm by predicting the genome–wide gene expression

levels in six different human cell lines. We compared our

method with a widely used technique to predict the expression

level of genes, obtaining considerably higher accuracy and

correlation in all the cell lines we considered. Moreover, the

algorithm is also efficient and nicely scales on large size

data, permitting its straightforward application at the whole–

genome level for virtually all the most studied organisms,

beside human. Finally, in the benchmark tests we performed

each cell line has been processed independently from the

others, that is, without considering the existing relationships

among the expression profiles of different cell lines. The next

logical step is embedding these relationships in the model,

and to exploit them for the prediction tasks, with possible

significant improvements on the performance of the algorithm.
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