L' ambiente grafico di R

- Il linguaggio R è dotato di un ambiente grafico potente e versatile
- E' semplice produrre grafici per l' analisi esplorativa dei dati
- Si possono facilmente generare grafici di elevata qualità utilizzabili per pubblicazioni
- L' ampiente grafico di R può generare grafici in diversi formati:
 - Display in finestre grafiche (Linux, Windows e Macintosh)
 - > postscript
 - pdf (Adobe Portable Document Format)
 - jpeg (JPEG bitmap)
 - > png (PNG bitmap, simile a GIF)
 - > wmf (Windows Metafile)

Plot

• E' una funzione generica di R: il tipo di grafico generato dipende dal tipo o classe del suo argomento:

- **plot**(x,y) : se x e y sono vettori produce un grafico delle coppie (x_i,y_i)
- plot(X): se X è una matrice a due colonne produce il plot di una colonna rispetto all'altra
- plot(x): se x è un vettore produce un grafico dei valori del vettore rispetto agli indici

• **plot** (df): se df è un dataframe, produce i grafici delle distribuzioni delle variabili contenute nel data frame

• plot dispone di diversi argomenti (si veda l'help)

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

Plot di un vettore numerico:grafico di dispersione

> x <- sample(1:50, 20)
>plot(x,col="2",pch="+")

Esistono diversi parametri grafici: Es.

- pch : sombolo usato
- col : colore dei punti/linee Etc.

Laboratorio di Statistica 2015/2016

> x <- sample(1:50, 20)
> plot(x, xlab="Sample",
 ylab="Value")

xlab e **ylab** permettono di assegnare una etichetta agli assi

Laboratorio di Statistica 2015/2016

plot: argomento type

> x <- sample(1:50, 20)
> plot(x, xlab="Sample",
 ylab="Value", type="l")

type specifica il tipo di grafico:"l" sta per lines, "b" per both, linee e punti, etc.

Vedi Help in linea, e provate

Laboratorio di Statistica 2015/2016

Plot di un vettore numerico rispetto ad un altro

- x <- 1:10
 y <- sin(x)
 plot(x, y, xlab="x",
 ylab="sin(x)",
 type="b",
 main="Funzione
 seno")</pre>
- L'argomento **main** permette di inserire un titolo

•Quello ottenuto è un grafico poligonale

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

Aggiungere una linea o dei punti

- **abline**(*a*=-1,b=0.15, col=3)
 - *a* intercetta,
 - *b* coefficiente angolare
- points(c(1, 2, 3), c(0.2, 0.3, 0.4), pch=3, col =6)

Laboratorio di Statistica 2015/2016

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

Esercizi

ESERCIZIO 1.

- Inserire in una matrice i dati dei 30 lavoratori riportati nella tabella 2.12 a pag 48.

- riprodurre i grafici di dispersione delle figure 2.13 e 2.14 a pagina 49.

ESERCIZIO 2

- Rispondere ai punti (a), (b) e (c) del problema 1 a pagina 50.

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

Marco Frasca

barplot

- barplot(x) genera un grafico a barre partendo dai valori del vettore x

Es.

- width : per la larghezza delle barre
- horiz: per un grafico orizzontale
- Vedere l'Help in linea

Laboratorio di Statistica 2015/2016

Marco Frasca

Esempio di barplot

Hist

hist genera istogrammi utilizzando un vettore numerico.
 Esempi:

• hist(x):

genera un istogramma utilizzando il vettore numerico x

• hist(x, nclass=n):

genera un istogramma con un numero n di classi

• hist(x, breaks=b, ...):

i punti di break degli intervalli dei valori di x che delimitano le classi sono esplicitamente elencati con il parametro **breaks**

hist(x, probability=TRUE)

le colonne rappresentano frequenze relative invece che assolute

Laboratorio di Statistica 2015/2016

cholesterol

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

day_off

Laboratorio di Statistica 2015/2016

Diagrammi ramo foglia

• In R i diagrammi ramo foglia si ottangono con il comando **stem**

• Tramite l'argomento *scale* si può personalizzare la visualizzazione

> prova <- c(5, 27, 18, 11, 63, 39)
> stem(prova , scale=2)

The decimal point is 1 digit(s) to the right of the |

Università degli Studi di Milano

Boxplot

Forniscono una descrizione grafica sintetica di un insieme di dati utilizzando semplici statistiche
data(iris);
boxplot(iris[,1:4],

col="yellow")

Laboratorio di Statistica 2015/2016

Università degli Studi di Milano

Laboratorio di Statistica 2015/2016

150

Laboratorio di Statistica 2015/2016

Marco Frasca

0

Boxplot: outliers

350

•Identify legge la posizione puntatore grafico quando il pulsante del mouse viene premuto, e cerca le coordinate del punto più vicino al puntatore, e ne stampa il nome > n <- length(cholesterol)</pre> > names(cholesterol)<-</p> paste0("name",1:n) > identify(rep(1, n), cholesterol, labels = names(cholesterol)) •Il primo vettore rappresenta le ascisse, tutti 1 perché i punti sono in verticale •labels è l'etichetta associata ai punti

0

Grafici a torta

• Può essere utile aggiungere le percentuali:

slices <- c(265, 184, 84, 55, 54, 35, 32, 27)
lbls <- c("EPP", "S&D", "ALDE", "Greens-EFA", "ECR", "EUL-NGL", "NFD", "NI")
pct <- round(slices/sum(slices)*100) #calcolo delle percentuali
lbls <- paste(lbls, pct) # aggiungo il numero percentuale alle etichette
lbls <- paste(lbls,"%",sep="") # aggiungo il simbolo % alle etichette
pie(slices, labels = lbls, main="Grafico a torta dei partiti presenti all'EuroParlamento 2009")

Grafici a torta

•Senza ulteriori specificazioni, ogni fetta della torta viene colorata con un colore leggermente diverso.

•Possiamo cambiare questa impostazione, ad esempio scegliendo un unico colore per ogni fetta (è sufficiente aggiungere, ad esempio, col="red")

•Oppure possiamo decidere di colorare diversamente ogni fetta, con il seguente comando: col=rainbow(length(lbls))

Grafici a torta 3D

• Per creare un grafico a torta tridimensionale, dobbiamo caricare il package **plotrix**.

> library(plotrix)

> pie3D(slices, labels = lbls, main="Grafico a torta dei partiti
presenti all'EuroParlamento 2009")

Grafici a torta 3D

•Questo grafico può essere ampiamente personalizzato

- Possiamo ad esempio specificare l'altezza della torta (height=) o il suo raggio (radius=)
- l'angolo a partire dal quale cominciare a tagliare le fette espresso in radianti (start=),
- a quale angolatura presentare la torta (theta=)
- I colori (col=)
- la posizione delle etichette (labelpos=) e il loro colore (labelcol=)
- e possiamo scegliere di separare le fette con l'argomento explode

Laboratorio di Statistica 2015/2016

Esercizi

- 3. I seguenti dati rappresentano le dimensioni di 30 famiglie
 5, 13, 9, 12, 7, 4, 8, 6, 6, 10, 7, 11, 10, 8, 15,
 8, 6, 9, 12, 10, 7, 11, 10, 8, 12, 9, 7, 10, 7, 8
 - a) Costruisci una tabella delle frequenze per questi datib) Rappresenta i dati con un grafico a bastoncinic) Rappresenta i dati con un grafico poligonale
- 4. Indica se ciascuno dei seguenti insiemi di dati è simmetrico, approssimativamente simmetrico, o decisamente non simmetrico A: 6, 0, 2, 1, 8, 3, 5;
 B: 4, 0, 4, 0, 2, 1, 3, 2
 C: 1, 1, 0, 1, 0, 3, 3, 2, 2, 2; D: 9, 9, 1, 2, 3, 9, 8, 4, 5

Esercizi

5. I seguenti numeri indicano la concentrazione di ozono nell'aria durante 25 giorni consecutivi
6.2, 9.1, 2.4, 3.6, 1.9, 1.7, 4.5, 4.2, 3.3, 5.1, 6.0, 1.8, 2.3, 4.9, 3.7, 3.8, 5.5, 6.4, 8.6, 9.3, 7.7, 5.4, 7.2, 4.9, 6.2

a)Costruisci un istogramma delle frequenze usando la classe da 3 a 5 b)Costruisci un istogramma delle frequenze usando la classe da 2 a 3 c) Quale istogramma delle frequenze ti sembra più utile?

6. Il numero di decessi su strade lo scorso anno è il seguente: Pedoni: 1699, Ciclisti: 280, Motociclisti:650, automobilisti: 1327

- Rappresenta questo insieme di dati in un grafico a torta a assegnando il colore rosso ai Pedoni, ed il verde ai Motociclisti.